AP Calculus BC: Basic Concepts from AB Practice
** note that your quiz can have ANY of the concepts from AB, NOT just what you see here as examples**

1. Given the following graph, please indicate the area formula needed to calculate the area of the shaded region:

2. What equation would you use to calculate the volume if the region in \#1 is rotated about the x-axis?
3. What equation would you use to calculate the volume if the region in $\# 1$ is rotated about the line $y=6$?
4. What equation would you use to calculate the volume of a solid with the base as area in region in \#1 if cross-sections cut perpendicular to x -axis were semicircles?
5. The height of an object at time t is $s(t)$. Give the formula used to determine the average velocity on interval [1, 8].
6. Given the volume $\mathrm{V}(\mathrm{x})$ determine the formula used to determine the average volume on interval [1, 4].
7. Given position $x(t)$, how would you use calculus to determine when the object is moving left?
8. Given position $=x(t)$, velocity $=v(t)$, and acceleration $=a(t)$, give the formula to determine the total distance traveled on time interval $[a, b]$.
9. Given velocity $=\mathrm{v}(\mathrm{t})$ and object is at 4 m at $\mathrm{t}=3$, give the formula used to determine position at $\mathrm{t}=0$.

$$
\mathrm{s}(0)=
$$

10. Given velocity $=v(t)$, give the formula to determine displacement $[a, b]$.
11. Give the general formula used to do the Midpoint Riemann Sum to approximate $\int_{2}^{4} f(x) d x$ using 4 equal subintervals.
12. Give the general formula used to do the Trapezoidal Sum to approximate $\int_{2}^{4} f(x) d x$ using 4 equal subintervals.
13. Given $\frac{d P}{d t}=0.02 P(500-2 P)$ is a logistic differential equation where P is the number of gorillas in a nature preserve, determine (include units):

$$
\lim _{t \rightarrow \infty} P(t)=
$$

Max growth rate occurs at $\mathrm{P}=$ \qquad
14. Explain HOW you would use calculus to determine the ABSOLUTE minimum for $f(x)$ on $[a, b]$.
15. State the Mean Value Theorem.
16. Evaluate $\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec x}{h}$
17. Give the formula to find the length of $f(x)$ on $[2,6]$.

