- A particle is moving such that its position (in cm) at time t seconds is $\langle t^3 3t^2 + 4t$, $\sin t \rangle$
 - V(+)=(3+2-6++4, cost > 2(4)=(6+-6,-sint) a) Find v(t) and a(t).
 - b) Describe the motion of the particle at t = 1 second.
 - Describe the motion of the particle at t=1 second. $\vec{V}(1)=\langle 1, 54037 \quad \vec{a}(1)=\langle 0, -.8415 \rangle$ Moving \vec{r} at constant speed $\vec{v}'(1)=0$ Since $\vec{v}'(1)=0$ Moving \vec{v} and $\vec{v}'(1)=0$ Moving \vec{v} and \vec{v} speed dec. Since $\vec{v}'(1)>0$ and $\vec{v}''(1)<0$.
 - c) Find the speed at 2 seconds. 4,0216 Cm/S
 - d) Find the total distance traveled on [0, 4].

32.271 cm

An object moves along a curve in the xy-plane with position $\langle x(t), y(t) \rangle$ at time t seconds for $0 \le t \le 5$ and

 $\frac{dx}{dt} = \sin(t^2)$ and $\frac{dy}{dt} = t^3 \cos t$. At t = 1, the object is at position $\langle -2, 4 \rangle$.

- a) Find the speed at t = 1 second.
- b) Find the total distance traveled on [0, 5]. $76.720 = \int \int (\sin(t^2))^2 + (t^3 \cos t)^2 dt$
- c) Find the displacement on [0, 5].

(.5279,-65.525) 4 st=4. Ssin(+2)d+=X(4)+2 (-1.563,-47.897) 15t2costd+=4(4)-4

- d) Find the position at t = 4.
- The acceleration of an object moving in the xy-plane is given by $\left\langle \tau 1, \frac{1}{\tau} \right\rangle$ for the time interval [1, 6]. At t = 1,

the object is at (2, 1) and at rest.

the object is at (2, 1) and at rest.

a) Find $\vec{v}(t)$ and the position vector (x(t), y(t)). $\vec{r}(t) = \left(\frac{1}{2}t^2 - t + \frac{1}{2}t\right) + \frac{1}{2}t + \frac{$

Explain why or why not. No, dx + dy never = 0 s/m/taneous/y

d) Determine the speed at t = 3 seconds.

2.282