A.P. Calculus: Summer Assignment

All work is expected to be neat and labeled on separate paper. No *legible work* = no credit. You should NOT use a calculator unless the problem is labeled with an (*) and bold. A good resource for review is the website www.coolmath.com (choose precalc/calc). You can also go to my website: www.kreganmath.weebly.com

This will be collected on Day 1 with a quiz on this material Day 3. This summer assignment is intended for you to do as REVIEW to prepare for the quiz – your first grade in AP Calculus. If you struggle with any of these concepts, you may need to do *additional review on your own as needed* in order to be prepared for both the quiz AND this course.

Solve the following. Express solutions to inequalities in interval notation. Only use a calculator on the problems labeled with an *. Any decimals should be rounded to 3 decimal places.

1. (x+1)(x+2)(x+3) < 0 2. $x^4 < 4x^2$ 3. $x^3 > 1$ 4*. $x^3 - 3x + 1 \le 0$

5*. $\mathbf{x}^4 - 4\mathbf{x} \le -\mathbf{x}^2 + 2\mathbf{x}$ 6. $\frac{(x-3)(x+2)}{(x-1)} < 0$ 7. $x + \frac{12}{x} < 7$ 8. $\frac{x-4}{2x+4} \ge 1$

- 9. $\frac{1}{x+2} > \frac{3}{x+1}$ 10. For what positive numbers will the square of a number exceed twice the number?
- 11. What is the domain of $y = \sqrt{x^3 3x^2}$? 12. What is the domain of $y = \sqrt{\frac{x-1}{x+4}}$?

13*. A ball is thrown vertically upward with an initial velocity of 96 ft/s. The distance s (in feet) of the ball from the ground after t seconds is $s(t) = 96t - 16t^2$.

a. For what time interval is the ball more than 112 feet above the ground?

b. What is the maximum height of the ball?

- 14. Find f(g(x)) and g(f(x)) if $f(x) = \frac{x}{3x+2}$ and $g(x) = \frac{2}{x}$. Write answers in simplest form. Include the domain.
- 15. Find a composite function form for y (in other words, determine f(x) and g(x) so that y = f(g(x))):

a.
$$y = (x^2 + 3x)^{\overline{3}}$$
 b. $y = \frac{1}{(x^2 + 3x - 5)^3}$

- 16. **Describe** in words (be specific) what the following would do to a given graph of f(x):
 - a. f(x-2) b. f(x+3) 6 c. |f(x)| d. -3f(x)

Find f⁻¹(x). Pay attention to the given restrictions for #17 and #18.

17. $f(x) = -(x-2)^2$, $x \le 2$ 18. $f(x) = x^2 + 2x + 1$, $x \ge -1$ 19. $f(x) = \frac{2x+1}{x+3}$ 20. $f(x) = \log_2(x+1)$

Determine the domain. Express in interval notation.

21.
$$y = \frac{\sqrt{x+6}}{x-3}$$
 22. $y = \sqrt{x^2 - 7x + 10}$ 23. $y = \log(x^2 - 4)$ 24. $y = e^{3x+4}$

25.
$$y = 3x^4 - 2x + 1$$
 26. $y = \frac{x^2 - 9}{x^2 + x - 12}$

27. Solve for y and simplify where possible: $\ln (y - 1) - \ln 2 = x + \ln x$

Solve for x. Leave answers in logarithmic or exponential form if needed but simplified completely:

28. $5^{x-2}=3$ 29. $\ln x + \ln 3 = 6$ 30. $\log x + \log (x-6) = \log 16$

31. $e^{2\ln x} = 9$ 32. $\ln e^{x} = 2.34$ 33. $32e^{4x} = 16$ 34. $x = 3^{\log_3 6 + \log_3 4 - 2\log_3 5}$

Sketch the following on separate paper (NO CALC):

35.
$$f(x) = 2x$$
 $x < -1$ 36. $y = (x - 2)^3 + 1$ 37. $y = \sqrt{x+3}$ 38. $y = \arctan x$
 $x^2 + 2$ $-1 \le x < 1$
 $3 - x$ $x > 1$

Factor the following **completely**: (Refer to <u>www.coolmath.com</u> "Freaky factoring")

39.
$$3x^2(x-4)^3 - 2x^3(x-4)^2$$

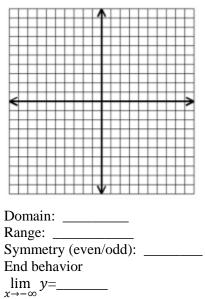
40. $(4x-1)^3(x+3)^2 - (4x-1)^2(x+3)^2$

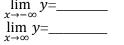
Find the exact solutions on the interval $[0, 2\pi)$ unless otherwise stated. Only use a calculator for #43.

41. $4\cos^2 x - 3 = 0$	42. $\sin^2 x = \sin x \ [0, \pi]$	43*. $2\sin 2x = \sqrt{x}$ [0, π]
44. $1 - 2\sqrt{2} \sin x \cos x = 0$	45. $\sin 2x = \sin x x \in \Re$	46. $\sin 2x + \cos x = 0$ $x \in \Re$
47. $2\sin^2 x = 3\sin x - 1$	48. $\sin^2 x + 2\cos x = -2$	49. $\cos 2x + \sin^2 x = 0$
50. $2\sin^2(x/2) - 3\sin(x/2) + 1 = 0$	51. $\cos x = \cot x$	52. $\sqrt{3} \csc^2 x + 2\csc x = 0$

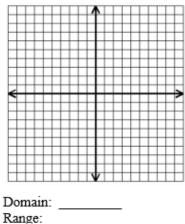
53. $2\tan^2 x - 3\sec x = -3$

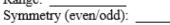
Simplify the following completely:

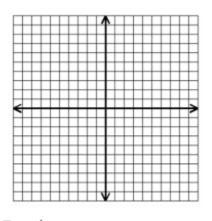

54.
$$y = \frac{x-4}{\sqrt{x-2}}$$
 55. $y = \frac{x^5 - 32}{x-2}$ 56. $y = \frac{x^3 + 8}{x^4 - 16}$ 57. $y = \frac{x+3}{\frac{1}{x} + \frac{1}{3}}$
58. $y = \frac{h}{4 - \sqrt{16 + h}}$


**Must have memorized: Parent graphs and their domain/range/symmetry/end behavior – see next page; UNIT CIRCLE IN RADIANS, graphs of all 6 trig functions and y = arctan x, trig identities (all basic identities, Pythagorean, and double angle (sine and cosine)). These will be included on the quiz day 3.

You will have a quiz on these review topics on Day 3. Be prepared!!

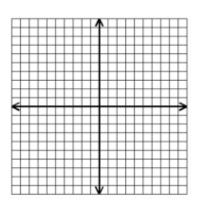

For each of the following, GRAPH – labeling axis values, determine domain and range in interval notation, discuss symmetry, and describe end behavior (if applicable).


1.
$$y = |x|$$



4. $y = \sin x$

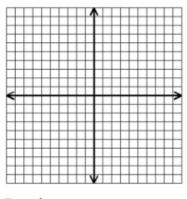
2. $y = x^2$

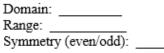


Domain:
Range:
Symmetry (even/odd):
End behavior
$\lim_{x \to -\infty} y = \underline{\qquad}$
$\lim_{x \to \infty} y = \underline{\qquad}$
<i>x</i> -500

	▲	П		TT	
		\square	++	++	
	++	+++	++	++	+++
	++	+++	++	++	+++
	Ηt	+++	++	++	HH.
			\rightarrow		
<	++	+++	++	++	↦
	++	+++	++	++	HFH.
	+	+++	++	++	HH
		\square	++	++	
	++	+++	++	++	+++
+++++++++++++++++++++++++++++++++++++++	++	+++	++	++	HH.
					Ħ
	V				
Domain: Range:					
Symmetry (ev	/en/	odd): _		
End behavior					
$\lim_{x\to -\infty} y=$		-			

5. $y = \cos x$




Domain:		
Range:		
Symmetry	(even/odd):	

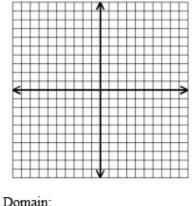
6. y = tan x

lim y=____

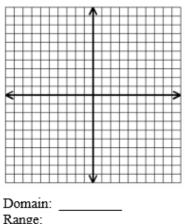
 $x \rightarrow \infty$

Period:

Period:

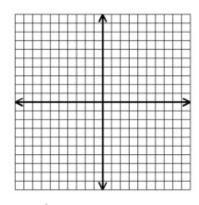

Period:

7. $y = \arctan x$

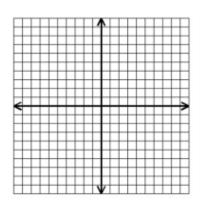

	П	Т	Т	Т	Т	Т			N									
	П	Т	Т	Т	Т	Т												
				T														
	П			Ι		Γ												
	Ц	_	_	\downarrow	+	+	1						L					L
	Ц	_	_	+	+	+	1						L					_
. €	4	4	+	+	+	+	-		⊢		_	-	-		-			5
	14	-+	+	+	+	+	-	\square		-	_	-	⊢	-	-			-
-	\vdash	-+	+	+	+	+	-	\vdash		-	_	-	⊢	-	-			-
-	H	+	+	+	+	+	+	\vdash		-	-	-	⊢	-	-			-
-	\vdash	+	+	+	+	+	+	Н	H	-	-	⊢	⊢	H	H		-	-
-	H	+	+	+	+	+	+	Н	H	-	-	⊢	⊢	\vdash	-	\vdash	-	-
-	H	+	+	+	+	+	+	Н	H	-	-	⊢	⊢	H	-	\vdash	H	⊢
-	H	+	+	+	+	+	+	Н	H	H	-	⊢	⊢	H	H	H	H	H
	H	+	+	+	+	+	÷	Н	H	H	-	H	⊢	H	H	H	H	H
	H	+	+	$^+$	+	+	+			H		⊢	⊢	H	H	H	H	H
	-	-	-	-	-	-	-	-		-		-	-		-	-	-	
D	on	ıa	in	Ľ	_													
Ra	m	ge	2	_								_						
Sy	m	m	le	tr	y	(e	ve	m	/c	d	ď):						
Er	ıd	b	eł	ıa	vi	01	5											

End behavior	
$\lim_{x\to-\infty} y=$	
$\lim_{x\to\infty} y=$	
<i>x</i> →∞	

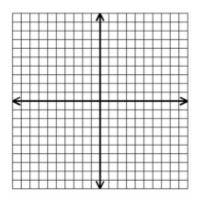
8.
$$y = e^x$$

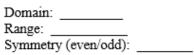


Domain.	
Range:	
Symmetry (even/odd):	
End behavior	
$\lim_{x \to -\infty} y = \underline{\qquad}$	
$\lim_{x \to \infty} y = \underline{\qquad}$	
x→∞	


Range:	
Symmetry (even/odd):	
End behavior	
$\lim_{x\to-\infty} y=$	
$\lim_{x \to \infty} y = \underline{\qquad}$	
x→∞	

10. $y = \frac{1}{x}$


Domain: _____ Range: _____ Symmetry (even/odd): _____ End behavior $\lim_{x \to -\infty} y=$ _____ $\lim_{x \to \infty} y=$ _____


11.
$$y = \sqrt{x}$$

Domain: _____ Range: _____ Symmetry (even/odd): _____ End behavior $\lim_{x \to -\infty} y=$ _____ $\lim_{x \to \infty} y=$ _____

12. $y = \sqrt{9 - x^2}$

