AP Calculus BC-3

The Taylor series about x = 5 for a certain function f converges to f(x) for all x in the interval of convergence. The *n*th derivative of f at x = 5 is given by $f^{(n)}(5) = \frac{(-1)^n n!}{2^n (n+2)}$, and $f(5) = \frac{1}{2}$.

- (a) Write the third-degree Taylor polynomial for f about x = 5.
- (b) Find the radius of convergence of the Taylor series for f about x = 5.
- (c) Show that the sixth-degree Taylor polynomial for f about x = 5 approximates f(6) with error less than $\frac{1}{1000}$.

Question 6

The Maclaurin series for $\ln\left(\frac{1}{1-x}\right)$ is $\sum_{n=1}^{\infty} \frac{x^n}{n}$ with interval of convergence $-1 \le x < 1$. (a) Find the Maclaurin series for $\ln\left(\frac{1}{1+3x}\right)$ and determine the interval of convergence.

- (b) Find the value of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.
- (c) Give a value of p such that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ diverges. Give reasons why your value of p is correct.

(d) Give a value of p such that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ converges. Give reasons why your value of p is correct.

Question 6

A function f is defined by

$$f(x) = \frac{1}{3} + \frac{2}{3^2}x + \frac{3}{3^3}x^2 + \dots + \frac{n+1}{3^{n+1}}x^n + \dots$$

for all x in the interval of convergence of the given power series.

(a) Find the interval of convergence for this power series. Show the work that leads to your answer.

(b) Find $\lim_{x \to 0} \frac{f(x) - \frac{1}{3}}{x}$.

- (c) Write the first three nonzero terms and the general term for an infinite series that represents $\int_0^1 f(x) dx$.
- (d) Find the sum of the series determined in part (c).

BC-4

- The function f has derivatives of all orders for all real numbers x. Assume f(2) = −3, f'(2) = 5, f''(2) = 3, and f'''(2) = −8.
 - (a) Write the third–degree Taylor polynomial for f about x = 2 and use it to approximate f(1.5).
 - (b) The fourth derivative of f satisfies the inequality |f⁽⁴⁾(x)| ≤ 3 for all x in the closed interval [1.5, 2]. Use the Lagrange error bound on the approximation to f(1.5) found in part (a) to explain why f(1.5) ≠ -5.
 - (c) Write the fourth-degree Taylor polynomial, P(x), for $g(x) = f(x^2 + 2)$ about x = 0. Use P to explain why g must have a relative minimum at x = 0.
- Let f be a function that has derivatives of all orders for all real numbers. Assume f(0) = 5, f'(0) = −3, f''(0) = 1, and f''(0) = 4.
 - (a) Write the third-degree Taylor polynomial for f about x = 0 and use it to approximate f(0.2).
 - (b) Write the fourth-degree Taylor polynomial for g, where $g(x) = f(x^2)$, about x = 0.
 - (c) Write the third-degree Taylor polynomial for h, where $h(x) = \int_{0}^{x} f(t) dt$, about x = 0.
 - (d) Let h be defined as in part (c). Given that f(1) = 3, either find the exact value of h(1) or explain why it cannot be determined.

$$\begin{split} f(0) &= 0 \\ f'(0) &= 1 \\ f^{(n+1)}(0) &= -n \cdot f^{(n)}(0) \mbox{ for all } n \geq 1 \end{split}$$

6. A function f has derivatives of all orders for -1 < x < 1. The derivatives of f satisfy the conditions above. The Maclaurin series for f converges to f(x) for |x| < 1.

(a) Show that the first four nonzero terms of the Maclaurin series for f are $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$, and write the

general term of the Maclaurin series for f.

- (b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at x = 1. Explain your reasoning.
- (c) Write the first four nonzero terms and the general term of the Maclaurin series for $g(x) = \int_0^x f(t) dt$.
- (d) Let $P_n\left(\frac{1}{2}\right)$ represent the *n*th-degree Taylor polynomial for g about x = 0 evaluated at $x = \frac{1}{2}$, where g is

the function defined in part (c). Use the alternating series error bound to show that

 $\left|P_4\left(\frac{1}{2}\right) - g\left(\frac{1}{2}\right)\right| < \frac{1}{500}.$