CHAPTER 1

Limits and Their Properties

Section 1.1	A Preview of Calculus	. 305
Section 1.2	Finding Limits Graphically and Numerically	. 305
Section 1.3	Evaluating Limits Analytically	. 309
Section 1.4	Continuity and One-Sided Limits	. 315
Section 1.5	Infinite Limits	. 320
Review Exer	cises	. 324
Problem Solv	ving	327

CHAPTER 1

Limits and Their Properties

Section 1.1 A Preview of Calculus

Solutions to Even-Numbered Exercises

- 2. Calculus: velocity is not constant
 Distance $\approx (20 \text{ ft/sec})(15 \text{ seconds}) = 300 \text{ feet}$
- **4.** Precalculus: rate of change = slope = 0.08

6. Precalculus: Area = $\pi (\sqrt{2})^2$ = 2π

- **8.** Precalculus: Volume = $\pi(3)^26 = 54\pi$
- **10.** (a) Area $\approx 5 + \frac{5}{2} + \frac{5}{3} + \frac{5}{4} \approx 10.417$ Area $\approx \frac{1}{2} \left(5 + \frac{5}{1.5} + \frac{5}{2} + \frac{5}{2.5} + \frac{5}{3} + \frac{5}{3.5} + \frac{5}{4} + \frac{5}{4.5} \right) \approx 9.145$
 - (b) You could improve the approximation by using more rectangles.

Section 1.2 Finding Limits Graphically and Numerically

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4} \approx 0.25 \quad \text{(Actual limit is } \frac{1}{4}.\text{)}$$

$$x$$
 -3.1
 -3.01
 -3.001
 -2.999
 -2.99
 -2.99
 $f(x)$
 -0.2485
 -0.2498
 -0.2500
 -0.2500
 -0.2502
 -0.2516

$$\lim_{x \to -3} \frac{\sqrt{1-x}-2}{x+3} \approx -0.25 \quad \text{(Actual limit is } -\frac{1}{4}.\text{)}$$

$$\lim_{x \to 4} \frac{[x/(x+1)] - (4/5)}{x - 4} \approx 0.04 \quad \text{(Actual limit is } \frac{1}{25}.\text{)}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} \approx 0.0000$$
 (Actual limit is 0.) (Make sure you use radian mode.)

10.
$$\lim_{x \to 1} (x^2 + 2) = 3$$

14.
$$\lim_{x \to 3} \frac{1}{x - 3}$$
 does not exist since the

function increases and decreases without bound as *x* approaches 3.

12.
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (x^2 + 2) = 3$$

16.
$$\lim_{x \to 0} \sec x = 1$$

18. $\lim_{x \to 1} \sin(\pi x) = 0$

20.
$$C(t) = 0.35 - 0.12[-(t-1)]$$

(b)
$$t$$
 3 3.3 3.4 3.5 3.6 3.7 4 $C(t)$ 0.59 0.71 0.71 0.71 0.71 0.71 0.71

$$\lim_{t \to 3.5} C(t) = 0.71$$

(c)	t	3	2.5	2.9	3	3.1	3.5	4
	C(t)	0.47	0.59	0.59	0.59	0.71	0.71	0.71

 $\lim_{t\to 3.5} C(t)$ does not exist. The values of C jump from 0.59 to 0.71 at t=3.

22. You need to find
$$\delta$$
 such that $0 < |x - 2| < \delta$ implies $|f(x) - 3| = |x^2 - 1 - 3| = |x^2 - 4| < 0.2$. That is,

$$-0.2 < x^{2} - 4 < 0.2$$

$$4 - 0.2 < x^{2} < 4 + 0.2$$

$$3.8 < x^{2} < 4.2$$

$$\sqrt{3.8} < x < \sqrt{4.2}$$

$$\sqrt{3.8} - 2 < x - 2 < \sqrt{4.2} - 2$$

So take
$$\delta = \sqrt{4.2} - 2 \approx 0.0494$$
.

Then $0 < |x - 2| < \delta$ implies

$$-(\sqrt{4.2} - 2) < x - 2 < \sqrt{4.2} - 2$$
$$\sqrt{3.8} - 2 < x - 2 < \sqrt{4.2} - 2.$$

Using the first series of equivalent inequalities, you obtain

$$|f(x) - 3| = |x^2 - 4| < \epsilon = 0.2.$$

24.
$$\lim_{x \to 4} \left(4 - \frac{x}{2} \right) = 2$$

$$\left| \left(4 - \frac{x}{2} \right) - 2 \right| < 0.01$$

$$\left| 2 - \frac{x}{2} \right| < 0.01$$

$$\left| -\frac{1}{2}(x - 4) \right| < 0.01$$

$$0 < |x - 4| < 0.02 = \delta$$
Hence, if $0 < |x - 4| < \delta = 0.02$, you have
$$\left| -\frac{1}{2}(x - 4) \right| < 0.01$$

$$\left| 2 - \frac{x}{2} \right| < 0.01$$

$$\left| \left(4 - \frac{x}{2} \right) - 2 \right| < 0.01$$

|f(x) - L| < 0.01

26.
$$\lim_{x \to 5} (x^2 + 4) = 29$$

$$|(x^2 + 4) - 29| < 0.01$$

$$|x^2 - 25| < 0.01$$

$$|(x + 5)(x - 5)| < 0.01$$

$$|x - 5| < \frac{0.01}{|x + 5|}$$

If we assume 4 < x < 6, then $\delta = 0.01/11 \approx 0.0009$.

Hence, if
$$0 < |x - 5| < \delta = \frac{0.01}{11}$$
, you have
$$|x - 5| < \frac{0.01}{11} < \frac{1}{|x + 5|}(0.01)$$
$$|x - 5||x + 5| < 0.01$$
$$|x^2 - 25| < 0.01$$
$$|(x^2 + 4) - 29| < 0.01$$
$$|f(x) - L| < 0.01$$

30.
$$\lim_{x \to 1} \left(\frac{2}{3}x + 9\right) = \frac{2}{3}(1) + 9 = \frac{29}{3}$$

Given $\epsilon > 0$:
 $\left| \left(\frac{2}{3}x + 9\right) - \frac{29}{3} \right| < \epsilon$
 $\left| \frac{2}{3}x - \frac{2}{3} \right| < \epsilon$
 $\left| \frac{2}{3}x - 1 \right| < \epsilon$
 $\left| x - 1 \right| < \frac{3}{2}\epsilon$

Hence, let $\delta = (3/2)\epsilon$.

Hence, if
$$0 < |x - 1| < \delta = \frac{3}{2}\epsilon$$
, you have
$$|x - 1| < \frac{3}{2}\epsilon$$
$$\left|\frac{2}{3}x - \frac{2}{3}\right| < \epsilon$$
$$\left|\left(\frac{2}{3}x + 9\right) - \frac{29}{3}\right| < \epsilon$$
$$|f(x) - L| < \epsilon$$

34.
$$\lim_{x \to 4} \sqrt{x} = \sqrt{4} = 2$$

Given $\epsilon > 0$: $\left| \sqrt{x} - 2 \right| < \epsilon$
 $\left| \sqrt{x} + 2 \right| = 1$

Assuming 1 < x < 9, you can choose $\delta = 3\epsilon$. Then,

$$0 < |x - 4| < \delta = 3\epsilon \implies |x - 4| < \epsilon |\sqrt{x} + 2|$$
$$\implies |\sqrt{x} - 2| < \epsilon.$$

 $|x-4| < \epsilon |\sqrt{x} + 2|$

28.
$$\lim_{x \to -3} (2x + 5) = -1$$
Given $\epsilon > 0$:
$$|(2x + 5) - (-1)| < \epsilon$$

$$|2x + 6| < \epsilon$$

$$2|x + 3| < \epsilon$$

$$|x + 3| < \frac{\epsilon}{2} = \delta$$

Hence, let $\delta = \epsilon/2$.

Hence, if
$$0 < |x+3| < \delta = \frac{\epsilon}{2}$$
, you have
$$|x+3| < \frac{\epsilon}{2}$$

$$|2x+6| < \epsilon$$

$$|(2x+5)-(-1)| < \epsilon$$

$$|f(x)-L| < \epsilon$$

32.
$$\lim_{x\to 2} (-1) = -1$$

Given $\epsilon > 0$: $\left|-1 - (-1)\right| < \epsilon$
 $0 < \epsilon$

Hence, any $\delta > 0$ will work.

Hence, for any $\delta > 0$, you have

$$|(-1) - (-1)| < \epsilon$$
$$|f(x) - L| < \epsilon$$

36.
$$\lim_{x \to 3} |x - 3| = 0$$

Given $\epsilon > 0$:

$$|(x-3) - 0| < \epsilon$$
$$|x-3| < \epsilon = \delta$$

Hence, let $\delta = \epsilon$.

Hence for
$$0 < |x - 3| < \delta = \epsilon$$
, you have

$$|x - 3| < \epsilon$$

$$||x - 3| - 0| < \epsilon$$

$$|f(x) - L| < \epsilon$$

$$|(x^2+3x)-0|<\epsilon$$

$$|x(x+3)| < \epsilon$$

$$|x+3| < \frac{\epsilon}{|x|}$$

If we assume -4 < x < -2, then $\delta = \epsilon/4$.

Hence for $0 < |x - (-3)| < \delta = \frac{\epsilon}{4}$, you have

$$|x+3| < \frac{1}{4}\epsilon < \frac{1}{|x|}\epsilon$$

$$|x(x+3)| < \epsilon$$

$$|x^2 + 3x - 0| < \epsilon$$

$$|f(x) - L| < \epsilon$$

42.
$$f(x) = \frac{x-3}{x^2-9}$$

$$\lim_{x \to 3} f(x) = \frac{1}{6}$$

The domain is all $x \neq \pm 3$. The graphing utility does not show the hole at $(3, \frac{1}{6})$.

46. Let p(x) be the atmospheric pressure in a plane at altitude x (in feet).

$$\lim_{x \to 0^+} p(x) = 14.7 \text{ lb/in}^2$$

The domain is all $x \neq 1$, 3. The graphing utility does not show the hole at $(3, \frac{1}{2})$.

- **44.** (a) No. The fact that f(2) = 4 has no bearing on the existence of the limit of f(x) as x approaches 2.
 - (b) No. The fact that $\lim_{x \to a} f(x) = 4$ has no bearing on the value of f at 2.

Using the zoom and trace feature, $\delta = 0.001$. That is, for

$$0 < |x-2| < 0.001, \left| \frac{x^2-4}{x-2} - 4 \right| < 0.001.$$

52. False: let

$$f(x) = \begin{cases} x^2 - 4x, & x \neq 4 \\ 10, & x = 4 \end{cases}$$

$$\lim_{x \to 4} f(x) = \lim_{x \to 4} (x^2 - 4x) = 0 \text{ and } f(4) = 10 \neq 0$$

54.
$$\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4} = 7$$

50. True

n	$4 + [0.1]^n$	$f(4 + [0.1]^n)$
1	4.1	7.1
2	4.01	7.01
3	4.001	7.001
4	4.0001	7.0001

n	$4 - [0.1]^n$	$f(4-[0.1]^n)$
1	3.9	6.9
2	3.99	6.99
3	3.999	6.999
4	3.9999	6.9999

309

If
$$0 < |x - c| < \delta = \frac{\epsilon}{|m|}$$
, then
$$|m||x - c| < \epsilon$$

$$|mx - mc| < \epsilon$$

$$|(mx + b) - (mc + b)| < \epsilon$$

which shows that $\lim_{x \to a} (mx + b) = mc + b$.

58. $\lim_{x \to \infty} g(x) = L$, L > 0. Let $\epsilon = \frac{1}{2}L$. There exists $\delta > 0$ such that $0 < |x - 0| < \delta$ implies $|g(x) - L| < \epsilon = \frac{1}{2}L$. That is,

$$-\frac{1}{2}L < g(x) - L < \frac{1}{2}L$$

$$\frac{1}{2}L < g(x) < \frac{3}{2}L$$

Hence for x in the interval $(c - \delta, c + \delta)$, $x \neq c$, $g(x) > \frac{1}{2}L > 0$.

(b) $\lim_{t \to -1} f(t) = -5$

Section 1.3 Evaluating Limits Analytically

(a) $\lim_{x \to 4} g(x) = 2.4$

$$g(x) = \frac{12(\sqrt{x} - 3)}{x - 9}$$

6.
$$\lim_{x \to -2} x^3 = (-2)^3 = -8$$

10.
$$\lim_{x \to 1} (-x^2 + 1) = -(1)^2 + 1 = 0$$

14.
$$\lim_{x \to -3} \frac{2}{x+2} = \frac{2}{-3+2} = -2$$

18.
$$\lim_{x \to 3} \frac{\sqrt{x+1}}{x-4} = \frac{\sqrt{3+1}}{3-4} = -2$$

22.
$$\lim_{x\to 0} (2x-1)^3 = [2(0)-1]^3 = -1$$

26. (a)
$$\lim_{x \to 4} f(x) = 2(4^2) - 3(4) + 1 = 21$$

(b)
$$\lim_{x \to 21} g(x) = \sqrt[3]{21 + 6} = 3$$

(c)
$$\lim_{x \to 4} g(f(x)) = g(21) = 3$$

30.
$$\lim_{x \to 1} \sin \frac{\pi x}{2} = \sin \frac{\pi}{2} = 1$$

34.
$$\lim_{x \to 5\pi/3} \cos x = \cos \frac{5\pi}{3} = \frac{1}{2}$$

$$f(t) = t|t - 4|$$

8.
$$\lim_{x \to -3} (3x + 2) = 3(-3) + 2 = -7$$

12.
$$\lim_{x \to 1} (3x^3 - 2x^2 + 4) = 3(1)^3 - 2(1)^2 + 4 = 5$$

16.
$$\lim_{x\to 3} \frac{2x-3}{x+5} = \frac{2(3)-3}{3+5} = \frac{3}{8}$$

20.
$$\lim_{x\to 4} \sqrt[3]{x+4} = \sqrt[3]{4+4} = 2$$

24. (a)
$$\lim_{x \to -3} f(x) = (-3) + 7 = 4$$

(b)
$$\lim_{x \to 4} g(x) = 4^2 = 16$$

(c)
$$\lim_{x \to -3} g(f(x)) = g(4) = 16$$

$$28. \lim_{x \to \pi} \tan x = \tan \pi = 0$$

32.
$$\lim_{x \to \pi} \cos 3x = \cos 3\pi = -1$$

36.
$$\lim_{x \to 7} \sec\left(\frac{\pi x}{6}\right) = \sec\frac{7\pi}{6} = \frac{-2\sqrt{3}}{3}$$

(b)
$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = \frac{3}{2} + \frac{1}{2} = 2$$

(c)
$$\lim_{x \to c} [f(x)g(x)] = [\lim_{x \to c} f(x)] [\lim_{x \to c} g(x)] = (\frac{3}{2})(\frac{1}{2}) = \frac{3}{4}$$

(d)
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{3/2}{1/2} = 3$$

42.
$$f(x) = x - 3$$
 and $h(x) = \frac{x^2 - 3x}{x}$ agree except at $x = 0$.

(a)
$$\lim_{x \to -2} h(x) = \lim_{x \to -2} f(x) = -5$$

(b)
$$\lim_{x \to 0} h(x) = \lim_{x \to 0} f(x) = -3$$

46.
$$f(x) = \frac{2x^2 - x - 3}{x + 1}$$
 and $g(x) = 2x - 3$ agree except at $x = -1$.

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} g(x) = -5$$

50.
$$\lim_{x \to 2} \frac{2 - x}{x^2 - 4} = \lim_{x \to 2} \frac{-(x - 2)}{(x - 2)(x + 2)}$$
$$= \lim_{x \to 2} \frac{-1}{x + 2} = -\frac{1}{4}$$

54.
$$\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x} = \lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x} \cdot \frac{\sqrt{2+x} + \sqrt{2}}{\sqrt{2+x} + \sqrt{2}}$$
$$= \lim_{x \to 0} \frac{2+x-2}{\left(\sqrt{2+x} + \sqrt{2}\right)x} = \lim_{x \to 0} \frac{1}{\sqrt{2+x} + \sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

56.
$$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3} = \lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3} \cdot \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2} = \lim_{x \to 3} \frac{x-3}{(x-3)[\sqrt{x+1}+2]} = \lim_{x \to 3} \frac{1}{\sqrt{x+1}+2} = \frac{1}{4}$$

58.
$$\lim_{x \to 0} \frac{\frac{1}{x+4} - \frac{1}{4}}{x} = \lim_{x \to 0} \frac{\frac{4 - (x+4)}{4(x+4)}}{x} = \lim_{x \to 0} \frac{-1}{4(x+4)} = -\frac{1}{16}$$

60.
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x (2x + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$$

40. (a)
$$\lim_{x \to 0} \sqrt[3]{f(x)} = \sqrt[3]{\lim_{x \to 0} f(x)} = \sqrt[3]{27} = 3$$

(b)
$$\lim_{x \to c} \frac{f(x)}{18} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} 18} = \frac{27}{18} = \frac{3}{2}$$

(c)
$$\lim_{x \to 0} [f(x)]^2 = [\lim_{x \to 0} f(x)]^2 = (27)^2 = 729$$

(d)
$$\lim_{x \to 0} [f(x)]^{2/3} = [\lim_{x \to 0} f(x)]^{2/3} = (27)^{2/3} = 9$$

44.
$$g(x) = \frac{1}{x-1}$$
 and $f(x) = \frac{x}{x^2 - x}$ agree except at $x = 0$.

(a)
$$\lim_{x \to 1} f(x)$$
 does not exist.

(b)
$$\lim_{x \to 0} f(x) = -1$$

48.
$$f(x) = \frac{x^3 + 1}{x + 1}$$
 and $g(x) = x^2 - x + 1$ agree except at $x = -1$.

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} g(x) = 3$$

52.
$$\lim_{x \to 4} \frac{x^2 - 5x + 4}{x^2 - 2x - 8} = \lim_{x \to 4} \frac{(x - 4)(x - 1)}{(x - 4)(x + 2)}$$

$$= \lim_{x \to 4} \frac{(x-1)}{(x+2)} = \frac{3}{6} = \frac{1}{2}$$

62.
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^3 - x^3}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{\Delta x(3x^2 + 3x\Delta x + (\Delta x)^2)}{\Delta x} = \lim_{\Delta x \to 0} (3x^2 + 3x\Delta x + (\Delta x)^2) = 3x^2$$

64.
$$f(x) = \frac{4 - \sqrt{x}}{x - 16}$$

х	15.9	15.99	15.999	16	16.001	16.01	16.1
f(x)	1252	125	125	?	125	125	1248

It appears that the limit is -0.125.

Analytically,
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{x - 16} = \lim_{x \to 16} \frac{(4 - \sqrt{x})}{(\sqrt{x} + 4)(\sqrt{x} - 4)}$$
$$= \lim_{x \to 16} \frac{-1}{\sqrt{x} + 4} = -\frac{1}{8}.$$

66.
$$\lim_{x\to 2} \frac{x^5 - 32}{x - 2} = 80$$

х	1.9	1.99	1.999	1.9999	2.0	2.0001	2.001	2.01	2.1
f(x)	72.39	79.20	79.92	79.99	?	80.01	80.08	80.80	88.41

Analytically,
$$\lim_{x \to 2} \frac{x^5 - 32}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^4 + 2x^3 + 4x^2 + 8x + 16)}{x - 2}$$

= $\lim_{x \to 2} (x^4 + 2x^3 + 4x^2 + 8x + 16) = 80.$

(*Hint*: Use long division to factor $x^5 - 32$.)

68.
$$\lim_{x \to 0} \frac{3(1 - \cos x)}{x} = \lim_{x \to 0} \left[3\left(\frac{1 - \cos x}{x}\right) \right] = (3)(0) = 0$$
 70. $\lim_{\theta \to 0} \frac{\cos \theta \tan \theta}{\theta} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$

70.
$$\lim_{\theta \to 0} \frac{\cos \theta \tan \theta}{\theta} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

72.
$$\lim_{x \to 0} \frac{\tan^2 x}{x} = \lim_{x \to 0} \frac{\sin^2 x}{x \cos^2 x} = \lim_{x \to 0} \left[\frac{\sin x}{x} \cdot \frac{\sin x}{\cos^2 x} \right]$$
$$= (1)(0) = 0$$

74.
$$\lim_{\phi \to \pi} \phi \sec \phi = \pi(-1) = -\pi$$

76.
$$\lim_{x \to \pi/4} \frac{1 - \tan x}{\sin x - \cos x} = \lim_{x \to \pi/4} \frac{\cos x - \sin x}{\sin x \cos x - \cos^2 x}$$
$$= \lim_{x \to \pi/4} \frac{-(\sin x - \cos x)}{\cos x (\sin x - \cos x)}$$
$$= \lim_{x \to \pi/4} \frac{-1}{\cos x}$$
$$= \lim_{x \to \pi/4} (-\sec x)$$
$$= -\sqrt{2}$$

78.
$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} = \lim_{x \to 0} \left[2 \left(\frac{\sin 2x}{2x} \right) \left(\frac{1}{3} \right) \left(\frac{3x}{\sin 3x} \right) = 2(1) \left(\frac{1}{3} \right) (1) = \frac{2}{3}$$

	80.	f(h)	= (1	$+\cos 2h$
--	-----	------	------	------------

h	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(h)	1.98	1.9998	2	?	2	1.9998	1.98

The limit appear to equal 2.

82.
$$f(x) = \frac{\sin x}{\sqrt[3]{x}}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	0.215	0.0464	0.01	?	0.01	0.0464	0.215

Analytically,
$$\lim_{x \to 0} \frac{\sin x}{\sqrt[3]{x}} = \lim_{x \to 0} \sqrt[3]{x^2} \left(\frac{\sin x}{x} \right) = (0)(1) = 0.$$

84.
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$
$$= \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

86.
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - 4(x+h) - (x^2 - 4x)}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 4x - 4h - x^2 + 4x}{h}$$
$$= \lim_{h \to 0} \frac{h(2x+h-4)}{h} = \lim_{h \to 0} (2x+h-4) = 2x-4$$

88.
$$\lim_{x \to a} [b - |x - a|] \le \lim_{x \to a} f(x) \le \lim_{x \to a} [b + |x - a|]$$
$$b \le \lim_{x \to a} f(x) \le b$$

Therefore,
$$\lim_{x \to a} f(x) = b$$
.

$$\lim_{x \to 0} |x \sin x| = 0$$

92.
$$f(x) = |x| \cos x$$

$$\lim_{x \to 0} |x| \cos x = 0$$

94.
$$h(x) = x \cos \frac{1}{x}$$

$$\lim_{x \to 0} \left(x \cos \frac{1}{x} \right) = 0$$

96.
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 and $g(x) = x + 1$ agree at all points except $x = 1$.

98. If a function
$$f$$
 is squeezed between two functions h and g , $h(x) \le f(x) \le g(x)$, and h and g have the same limit L as $x \to c$, then $\lim_{x \to c} f(x)$ exists and equals L .

100.
$$f(x) = x$$
, $g(x) = \sin^2 x$, $h(x) = \frac{\sin^2 x}{x}$

When you are "close to" 0 the magnitude of g is "smaller" than the magnitude of f and the magnitude of g is approaching zero "faster" than the magnitude of f. Thus, $|g|/|f| \approx 0$ when x is "close to" 0

102.
$$s(t) = -16t^2 + 1000 = 0$$
 when $t = \sqrt{\frac{1000}{16}} = \frac{5\sqrt{10}}{2}$ seconds

$$\lim_{t \to 5\sqrt{10}/2} \frac{s\left(\frac{5\sqrt{10}}{2}\right) - s(t)}{\frac{5\sqrt{10}}{2} - t} = \lim_{t \to 5\sqrt{10}/2} \frac{0 - (-16t^2 + 1000)}{\frac{5\sqrt{10}}{2} - t}$$

$$= \lim_{t \to 5\sqrt{10}/2} \frac{16\left(t^2 - \frac{125}{2}\right)}{\frac{5\sqrt{10}}{2} - t} = \lim_{t \to 5\sqrt{10}/2} \frac{16\left(t + \frac{5\sqrt{10}}{2}\right)\left(t - \frac{5\sqrt{10}}{2}\right)}{-\left(t - \frac{5\sqrt{10}}{2}\right)}$$

$$= \lim_{t \to 5\sqrt{10}/2} -16\left(t + \frac{5\sqrt{10}}{2}\right) = -80\sqrt{10} \text{ ft/sec} \approx -253 \text{ ft/sec}$$

104.
$$-4.9t^2 + 150 = 0$$
 when $t = \sqrt{\frac{150}{4.9}} = \sqrt{\frac{1500}{49}} \approx 5.53$ seconds.

The velocity at time t = a is

$$\lim_{t \to a} \frac{s(a) - s(t)}{a - t} = \lim_{t \to a} \frac{(-4.9a^2 + 150) - (-4.9t^2 + 150)}{a - t} = \lim_{t \to a} \frac{-4.9(a - t)(a + t)}{a - t}$$
$$= \lim_{t \to a} -4.9(a + t) = -2a(4.9) = -9.8a \text{ m/sec.}$$

Hence, if $a = \sqrt{1500/49}$, the velocity is $-9.8\sqrt{1500/49} \approx -54.2$ m/sec.

106. Suppose, on the contrary, that $\lim_{x\to c} g(x)$ exists. Then, since $\lim_{x\to c} f(x)$ exists, so would $\lim_{x\to c} [f(x)+g(x)]$, which is a contradiction. Hence, $\lim_{x\to c} g(x)$ does not exist.

108. Given $f(x) = x^n$, n is a positive integer, then

$$\lim_{x \to c} x^n = \lim_{x \to c} (xx^{n-1}) = \left[\lim_{x \to c} x\right] \left[\lim_{x \to c} x^{n-1}\right]$$

$$= c \left[\lim_{x \to c} (xx^{n-2})\right] = c \left[\lim_{x \to c} x\right] \left[\lim_{x \to c} x^{n-2}\right]$$

$$= c(c) \lim_{x \to c} (xx^{n-3}) = \cdots = c^n.$$

110. Given $\lim_{x \to c} f(x) = 0$:

For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - 0| < \epsilon$ whenever $0 < |x - c| < \delta$. Now $|f(x) - 0| = |f(x)| = ||f(x)| - 0| < \epsilon$ for $|x - c| < \delta$. Therefore, $\lim_{x \to a} |f(x)| = 0$.

112. (a) If
$$\lim_{x \to c} |f(x)| = 0$$
, then $\lim_{x \to c} [-|f(x)|] = 0$.

$$-|f(x)| \le f(x) \le |f(x)|$$

$$\lim_{x \to c} \left[-|f(x)| \right] \le \lim_{x \to c} f(x) \le \lim_{x \to c} |f(x)|$$

$$0 \le \lim_{x \to c} f(x) \le 0$$

Therefore, $\lim_{x \to c} f(x) = 0$.

(b) Given
$$\lim_{x \to c} f(x) = L$$
:

For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - c| < \delta$. Since $||f(x)| - |L|| \le |f(x) - L| < \epsilon$ for $|x - c| < \delta$, then $\lim_{x \to c} |f(x)| = |L|$.

114. True.
$$\lim_{x\to 0} x^3 = 0^3 = 0$$

116. False. Let
$$f(x) = \begin{cases} x & x \neq 1 \\ 3 & x = 1 \end{cases}$$
, $c = 1$
Then $\lim_{x \to 1} f(x) = 1$ but $f(1) \neq 1$.

118. False. Let
$$f(x) = \frac{1}{2}x^2$$
 and $g(x) = x^2$. Then $f(x) < g(x)$ for all $x \ne 0$. But $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$.

120.
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2 x}{x(1 + \cos x)} = \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1 + \cos x}$$

$$= \left[\lim_{x \to 0} \frac{\sin x}{x}\right] \left[\lim_{x \to 0} \frac{\sin x}{1 + \cos x}\right]$$

$$= (1)(0) = 0$$

122.
$$f(x) = \frac{\sec x - 1}{x^2}$$

(a) The domain of f is all
$$x \neq 0$$
, $\pi/2 + n\pi$.

(b)
$$\frac{2}{2}$$
 $\frac{3\pi}{2}$

The domain is not obvious. The hole at x = 0 is not apparent.

(c)
$$\lim_{x \to 0} f(x) = \frac{1}{2}$$

(d)
$$\frac{\sec x - 1}{x^2} = \frac{\sec x - 1}{x^2} \cdot \frac{\sec x + 1}{\sec x + 1} = \frac{\sec^2 x - 1}{x^2 (\sec x + 1)}$$
$$= \frac{\tan^2 x}{x^2 (\sec x + 1)} = \frac{1}{\cos^2 x} \left(\frac{\sin^2 x}{x^2}\right) \frac{1}{\sec x + 1}$$

Hence,
$$\lim_{x \to 0} \frac{\sec x - 1}{x^2} = \lim_{x \to 0} \frac{1}{\cos^2 x} \left(\frac{\sin^2 x}{x^2} \right) \frac{1}{\sec x + 1}$$
$$= 1(1) \left(\frac{1}{2} \right) = \frac{1}{2}.$$

124. The calculator was set in degree mode, instead of radian mode.

Section 1.4 Continuity and One-Sided Limits

2. (a)
$$\lim_{x \to -2^+} f(x) = -2$$

(b)
$$\lim_{x \to -2^{-}} f(x) = -2$$

(c)
$$\lim_{x \to -2} f(x) = -2$$

The function is continuous at x = -2.

8.
$$\lim_{x \to 2^+} \frac{2-x}{x^2-4} = \lim_{x \to 2^+} -\frac{1}{x+2} = -\frac{1}{4}$$

4. (a)
$$\lim_{x \to -2^+} f(x) = 2$$

(b)
$$\lim_{x \to -2^{-}} f(x) = 2$$

(c)
$$\lim_{x \to -2} f(x) = 2$$

The function is NOT continuous at x = -2.

6. (a)
$$\lim_{x \to -1^+} f(x) = 0$$

(b)
$$\lim_{x \to -1^{-}} f(x) = 2$$

(c) $\lim_{x \to -1} f(x)$ does not exist.

The function is NOT continuous at x = -1.

10.
$$\lim_{x \to 4^{-}} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4^{-}} \frac{\sqrt{x} - 2}{x - 4} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} + 2}$$
$$= \lim_{x \to 4^{-}} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)}$$
$$= \lim_{x \to 4^{-}} \frac{1}{\sqrt{x} + 2} = \frac{1}{4}$$

12.
$$\lim_{x\to 2^+} \frac{|x-2|}{x-2} = \lim_{x\to 2^+} \frac{x-2}{x-2} = 1$$

14.
$$\lim_{\Delta x \to 0^{+}} \frac{(x + \Delta x)^{2} + (x + \Delta x) - (x^{2} + x)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{x^{2} + 2x(\Delta x) + (\Delta x)^{2} + x + \Delta x - x^{2} - x}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} \frac{2x(\Delta x) + (\Delta x)^{2} + \Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} (2x + \Delta x + 1)$$

$$= 2x + 0 + 1 = 2x + 1$$

16.
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (-x^{2} + 4x - 2) = 2$$
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^{2} - 4x + 6) = 2$$
$$\lim_{x \to 2} f(x) = 2$$

18.
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (1 - x) = 0$$

- **20.** $\lim_{x \to \pi/2} \sec x$ does not exist since
 - $\lim_{x \to (\pi/2)^+} \sec x$ and $\lim_{x \to (\pi/2)^-} \sec x$ do not exist.

24.
$$\lim_{x \to 1} \left(1 - \left[\left[-\frac{x}{2} \right] \right] \right) = 1 - (-1) = 2$$

22.
$$\lim_{x \to 2^+} (2x - [x]) = 2(2) - 2 = 2$$

26.
$$f(x) = \frac{x^2 - 1}{x + 1}$$

has a discontinuity at x = -1 since f(-1) is not defined.

28.
$$f(x) = \begin{cases} x, & x < 1 \\ 2, & x = 1 \text{ has discontinuity at } x = 1 \text{ since } f(1) = 2 \neq \lim_{x \to 1} f(x) = 1. \\ 2x - 1, & x > 1 \end{cases}$$

- **30.** $f(t) = 3 \sqrt{9 t^2}$ is continuous on [-3, 3].
- **32.** g(2) is not defined. g is continuous on [-1, 2).

34.
$$f(x) = \frac{1}{x^2 + 1}$$
 is continuous for all real x .

36.
$$f(x) = \cos \frac{\pi x}{2}$$
 is continuous for all real x .

has a nonremovable discontinuity at x = 3 since $\lim_{x \to 3} f(x)$

38.
$$f(x) = \frac{x}{x^2 - 1}$$
 has nonremovable discontinuities at $x = 1$ and $x = -1$ since $\lim_{x \to 1} f(x)$ and $\lim_{x \to -1} f(x)$ do not exist.

40.
$$f(x) = \frac{x-3}{x^2-9}$$
 has a nonremovable discontinuity at $x = -3$ since $\lim_{x \to -3} f(x)$ does not exist, and has a removable discontinuity at $x = 3$ since

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{1}{x+3} = \frac{1}{6}.$$

42.
$$f(x) = \frac{x-1}{(x+2)(x-1)}$$

44.
$$f(x) = \frac{|x-3|}{x-3}$$

has a nonremovable discontinuity at x=-2 since $\lim_{\substack{x\to -2\\ \text{ity at }x}} f(x)$ does not exist, and has a removable discontinuity at x=1 since

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1}{x+2} = \frac{1}{3}.$$

46.
$$f(x) = \begin{cases} -2x + 3, & x < 1 \\ x^2, & x \ge 1 \end{cases}$$

has a **possible** discontinuity at x = 1.

1.
$$f(1) = 1^2 = 1$$

$$2. \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-2x + 3) = 1 \\
\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{2} = 1$$

3.
$$f(1) = \lim_{x \to 1} f(x)$$

f is continuous at x = 1, therefore, f is continuous for all real x.

48.
$$f(x) = \begin{cases} -2x, & x \le 2 \\ x^2 - 4x + 1, & x > 2 \end{cases}$$
 has a **possible** discontinuity at $x = 2$.

1.
$$f(2) = -2(2) = -4$$

$$\lim_{\substack{x \to 2^{-} \\ x \to 2^{-}}} f(x) = \lim_{\substack{x \to 2^{-} \\ x \to 2^{-}}} (-2x) = -4$$

$$\lim_{\substack{x \to 2^{+} \\ x \to 2^{+}}} f(x) = \lim_{\substack{x \to 2^{+} \\ x \to 2^{+}}} (x^{2} - 4x + 1) = -3$$

Therefore, f has a nonremovable discontinuity at x = 2.

50.
$$f(x) = \begin{cases} \csc \frac{\pi x}{6}, & |x-3| \le 2 \\ 2, & |x-3| > 2 \end{cases} = \begin{cases} \csc \frac{\pi x}{6}, & 1 \le x \le 5 \\ 2, & x < 1 \text{ or } x > 5 \end{cases}$$
 has **possible** discontinuities at $x = 1, x = 5$.

1.
$$f(1) = \csc \frac{\pi}{6} = 2$$
 $f(5) = \csc \frac{5\pi}{6} = 2$

2.
$$\lim_{x \to 1} f(x) = 2$$
 $\lim_{x \to 5} f(x) = 2$

3.
$$f(1) = \lim_{x \to 1} f(x)$$
 $f(5) = \lim_{x \to 5} f(x)$

f is continuous at x = 1 and x = 5, therefore, f is continuous for all real x.

- **52.** $f(x) = \tan \frac{\pi x}{2}$ has nonremovable discontinuities at each 2k + 1, k is an integer.
- **54.** f(x) = 3 [x] has nonremovable discontinuities at each integer k.

56. $\lim_{x\to 0^+} f(x) = 0$ $\lim_{x \to 0^{-}} f(x) = 0$ f is not continuous at x = -4 **58.** $\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{4 \sin x}{x} = 4$ $\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (a - 2x) = a$

- Let a = 4.

60.
$$\lim_{x \to a} g(x) = \lim_{x \to a} \frac{x^2 - a^2}{x - a}$$
$$= \lim_{x \to a} (x + a) = 2a$$

Find a such that $2a = 8 \implies a = 4$.

62.
$$f(g(x)) = \frac{1}{\sqrt{x-1}}$$

Nonremovable discontinuity at x = 1. Continuous for all x > 1.

Because $f \circ g$ is not defined for x < 1, it is better to say that $f \circ g$ is discontinuous from the right at x = 1.

64.
$$f(g(x)) = \sin x^2$$

Continuous for all real x

66.
$$h(x) = \frac{1}{(x+1)(x-2)}$$

Nonremovable discontinuity at x = -1 and x = 2.

68.
$$f(x) = \begin{cases} \frac{\cos x - 1}{x}, & x < 0 \\ 5x, & x \ge 0 \end{cases}$$

$$f(0) = 5(0) = 0$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{(\cos x - 1)}{x} = 0$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (5x) = 0$$

Therefore, $\lim_{x\to 0} f(x) = 0 = f(0)$ and f is continuous on the entire real line. (x = 0 was the only possible discontinuity.)

70.
$$f(x) = x\sqrt{x+3}$$

Continuous on $[-3, \infty]$

72.
$$f(x) = \frac{x+1}{\sqrt{x}}$$

Continuous on $(0, \infty)$

The graph **appears** to be continuous on the interval [-4, 4]. Since f(2) is not defined, we know that f has a discontinuity at x = 2. This discontinuity is removable so it does not show up on the graph.

78.
$$f(x) = \frac{-4}{x} + \tan \frac{\pi x}{8}$$
 is continuous on [1, 3].

$$f(1) = -4 + \tan \frac{\pi}{8} < 0 \text{ and } f(3) = -\frac{4}{3} + \tan \frac{3\pi}{8} > 0.$$

By the Intermediate Value Theorem, f(1) = 0 for at least one value of c between 1 and 3.

82.
$$h(\theta) = 1 + \theta - 3 \tan \theta$$

h is continuous on [0, 1].

$$h(0) = 1 > 0$$
 and $h(1) \approx -2.67 < 0$.

By the Intermediate Value Theorem, $h(\theta) = 0$ for at least one value θ between 0 and 1. Using a graphing utility, we find that $\theta \approx 0.4503$.

86.
$$f(x) = \frac{x^2 + x}{x - 1}$$

f is continuous on $\left[\frac{5}{2}, 4\right]$. The nonremovable discontinuity, x = 1, lies outside the interval.

$$f\left(\frac{5}{2}\right) = \frac{35}{6} \text{ and } f(4) = \frac{20}{3}$$

$$\frac{35}{6} < 6 < \frac{20}{3}$$

76.
$$f(x) = x^3 + 3x - 2$$
 is continuous on [0, 1].

$$f(0) = -2$$
 and $f(1) = 2$

By the Intermediate Value Theorem, f(x) = 0 for at least one value of c between 0 and 1.

80.
$$f(x) = x^3 + 3x - 2$$

f(x) is continuous on [0, 1].

$$f(0) = -2$$
 and $f(1) = 2$

By the Intermediate Value Theorem, f(x) = 0 for at least one value of c between 0 and 1. Using a graphing utility, we find that $x \approx 0.5961$.

84.
$$f(x) = x^2 - 6x + 8$$

f is continuous on [0, 3].

$$f(0) = 8$$
 and $f(3) = -1$

$$-1 < 0 < 8$$

The Intermediate Value Theorem applies.

$$x^2 - 6x + 8 = 0$$

$$(x-2)(x-4)=0$$

$$x = 2 \text{ or } x = 4$$

c = 2 (x = 4 is not in the interval.)

Thus,
$$f(2) = 0$$
.

The Intermediate Value Theorem applies.

$$\frac{x^2+x}{x-1}=6$$

$$x^2 + x = 6x - 6$$

$$x^2 - 5x + 6 = 0$$

$$(x-2)(x-3)=0$$

$$x = 2 \text{ or } x = 3$$

c = 3 (x = 2 is not in the interval.)

Thus,
$$f(3) = 6$$
.

88. A discontinuity at x = c is removable if you can define (or redefine) the function at x = c in such a way that the new function is continuous at x = c. Answers will vary.

(a)
$$f(x) = \frac{|x-2|}{x-2}$$

(a)
$$f(x) = \frac{|x-2|}{x-2}$$

(b) $f(x) = \frac{\sin(x+2)}{x+2}$

(c)
$$f(x) = \begin{cases} 1, & \text{if } x \ge 2\\ 0, & \text{if } -2 < x < 2\\ 1, & \text{if } x = -2\\ 0, & \text{if } x < -2 \end{cases}$$

90. If f and g are continuous for all real x, then so is f + g (Theorem 1.11, part 2). However, f/g might not be continuous if g(x) = 0. For example, let f(x) = x and $g(x) = x^2 - 1$. Then f and g are continuous for all real x, but f/g is not continuous at $x = \pm 1$.

92.
$$C = \begin{cases} 1.04, & 0 < t \le 2 \\ 1.04 + 0.36[t-1], & t > 2, t \text{ is not an integer} \\ 1.04 + 0.36(t-2), & t > 2, t \text{ is an integer} \end{cases}$$

Nonremovable discontinuity at each integer greater than 2.

You can also write C as

$$C = \begin{cases} 1.04, & 0 < t \le 2 \\ 1.04 - 0.36 [2 - t], & t > 2 \end{cases}.$$

94. Let s(t) be the position function for the run up to the campsite. s(0) = 0 (t = 0 corresponds to 8:00 A.M., s(20) = k (distance to campsite)). Let r(t) be the position function for the run back down the mountain: r(0) = k, r(10) = 0. Let f(t) = s(t) - r(t).

When
$$t = 0$$
 (8:00 A.M.), $f(0) = s(0) - r(0) = 0 - k < 0$.

When
$$t = 10$$
 (8:10 A.M.), $f(10) = s(10) - r(10) > 0$.

Since f(0) < 0 and f(10) > 0, then there must be a value t in the interval [0, 10] such that f(t) = 0. If f(t) = 0, then s(t) - r(t) = 0, which gives us s(t) = r(t). Therefore, at some time t, where $0 \le t \le 10$, the position functions for the run up and the run down are equal.

- **96.** Suppose there exists x_1 in [a, b] such that $f(x_1) > 0$ and there exists x_2 in [a, b] such that $f(x_2) < 0$. Then by the Intermediate Value Theorem, f(x) must equal zero for some value of x in $[x_1, x_2]$ (or $[x_2, x_1]$ if $x_2 < x_1$). Thus, f would have a zero in [a, b], which is a contradiction. Therefore, f(x) > 0 for all x in [a, b] or f(x) < 0 for all x in [a, b].
- **98.** If x = 0, then f(0) = 0 and $\lim_{x \to 0} f(x) = 0$. Hence, f is continuous at x = 0.

If $x \neq 0$, then $\lim_{t \to \infty} f(t) = 0$ for x rational, whereas

 $\lim_{t \to \infty} f(t) = \lim_{t \to \infty} kt = kx \neq 0$ for x irrational. Hence, f is not continuous for all $x \neq 0$.

100. True

1.
$$f(c) = L$$
 is defined.

2.
$$\lim_{x \to c} f(x) = L$$
 exists.

3.
$$f(c) = \lim_{x \to c} f(x)$$

All of the conditions for continuity are met.

102. False; a rational function can be written as P(x)/Q(x) where P and Q are polynomials of degree m and n, respectively. It can have, at most, n discontinuities.

- (b) There appears to be a limiting speed and a possible cause is air resistance.
- **106.** Let y be a real number. If y = 0, then x = 0. If y > 0, then let $0 < x_0 < \pi/2$ such that $M = \tan x_0 > y$ (this is possible since the tangent function increases without bound on $[0, \pi/2)$). By the Intermediate Value Theorem, $f(x) = \tan x$ is continuous on $[0, x_0]$ and 0 < y < M, which implies that there exists x between 0 and x_0 such that $\tan x = y$. The argument is similar if y < 0.
- **108. 1.** f(c) is defined.

2.
$$\lim_{x \to c} f(x) = \lim_{\Delta x \to 0} f(c + \Delta x) = f(c)$$
 exists.

[Let
$$x = c + \Delta x$$
. As $x \rightarrow c$, $\Delta x \rightarrow 0$]

3.
$$\lim_{x \to c} f(x) = f(c)$$
.

Therefore, f is continuous at x = c.

110. Define $f(x) = f_2(x) - f_1(x)$. Since f_1 and f_2 are continuous on [a, b], so is f.

$$f(a) = f_2(a) - f_1(a) > 0$$
 and $f(b) = f_2(b) - f_1(b) < 0$.

By the Intermediate Value Theorem, there exists c in [a, b] such that f(c) = 0.

$$f(c) = f_2(c) - f_1(c) = 0 \implies f_1(c) = f_2(c)$$

Section 1.5 Infinite Limits

2.
$$\lim_{x \to -2^{+}} \frac{1}{x+2} = \infty$$
$$\lim_{x \to -2^{-}} \frac{1}{x+2} = -\infty$$

4.
$$\lim_{x \to -2^+} \sec \frac{\pi x}{4} = \infty$$

$$\lim_{x \to -2^{-}} \sec \frac{\pi x}{4} = -\infty$$

6.
$$f(x) = \frac{x}{x^2 - 9}$$

х	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
f(x)	-1.077	-5.082	-50.08	-500.1	499.9	49.92	4.915	0.9091

$$\lim_{x \to -3^{-}} f(x) = -\infty$$

$$\lim_{x \to -3^+} f(x) = \infty$$

321

х	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
f(x)	-3.864	-19.11	-191.0	-1910	1910	191.0	19.11	3.864

$$\lim_{x \to -3^{-}} f(x) = -\infty$$

$$\lim_{x \to -3^+} f(x) = \infty$$

10.
$$\lim_{x\to 2^+} \frac{4}{(x-2)^3} = \infty$$

$$\lim_{x \to 2^{-}} \frac{4}{(x-2)^3} = -\infty$$

Therefore, x = 2 is a vertical asymptote.

12.
$$\lim_{x \to 0^-} \frac{2+x}{x^2(1-x)} = \lim_{x \to 0^+} \frac{2+x}{x^2(1-x)} = \infty$$

Therefore, x = 0 is a vertical asymptote.

$$\lim_{x \to 1^{-}} \frac{2 + x}{x^{2}(1 - x)} = \infty$$

$$\lim_{x \to 1^+} \frac{2 + x}{x^2 (1 - x)} = -\infty$$

Therefore, x = 1 is a vertical asymptote.

- 14. No vertical asymptote since the denominator is never zero.
- **16.** $\lim_{s \to -5^-} h(s) = -\infty$ and $\lim_{s \to -5^+} h(s) = \infty$.

Therefore, s = -5 is a vertical asymptote.

$$\lim_{s \to 5^{-}} h(s) = -\infty \text{ and } \lim_{s \to 5^{+}} h(s) = \infty.$$

Therefore, s = 5 is a vertical asymptote.

18.
$$f(x) = \sec \pi x = \frac{1}{\cos \pi x}$$
 has vertical asymptotes at $x = \frac{2n+1}{2}$, n any integer.

20.
$$g(x) = \frac{(1/2)x^3 - x^2 - 4x}{3x^2 - 6x - 24} = \frac{1}{6} \frac{x(x^2 - 2x - 8)}{x^2 - 2x - 8}$$
$$= \frac{1}{6}x,$$

$$x \neq -2, 4$$

No vertical asymptotes. The graph has holes at x = -2 and x = 4.

22.
$$f(x) = \frac{4(x^2 + x - 6)}{x(x^3 - 2x^2 - 9x + 18)} = \frac{4(x + 3)(x - 2)}{x(x - 2)(x^2 - 9)} = \frac{4}{x(x - 3)}, x \neq -3, 2$$

Vertical asymptotes at x = 0 and x = 3. The graph has holes at x = -3 and x = 2.

24.
$$h(x) = \frac{x^2 - 4}{x^3 + 2x^2 + x + 2} = \frac{(x+2)(x-2)}{(x+2)(x^2+1)}$$

has no vertical asymptote since

$$\lim_{x \to -2} h(x) = \lim_{x \to -2} \frac{x-2}{x^2+1} = -\frac{4}{5}.$$

26.
$$h(t) = \frac{t(t-2)}{(t-2)(t+2)(t^2+4)} = \frac{t}{(t+2)(t^2+4)}, t \neq 2$$

Vertical asymptote at t = -2. The graph has a hole at t = 2.

28. $g(\theta) = \frac{\tan \theta}{\theta} = \frac{\sin \theta}{\theta \cos \theta}$ has vertical asymptotes at $\theta = \frac{(2n+1)\pi}{2} = \frac{\pi}{2} + n\pi, n \text{ any integer.}$

There is no vertical asymptote at $\theta = 0$ since

$$\lim_{\theta \to 0} \frac{\tan \, \theta}{\theta} = 1.$$

 $32. \lim_{x \to -1} \frac{\sin(x+1)}{x+1} = 1$

Removable discontinuity at x = -1

- **36.** $\lim_{x \to 4^{-}} \frac{x^2}{x^2 + 16} = \frac{1}{2}$
- **40.** $\lim_{x\to 3} \frac{x-2}{x^2} = \frac{1}{9}$
- **44.** $\lim_{x \to (\pi/2)^+} \frac{-2}{\cos x} = \infty$
- **48.** $\lim_{x \to (1/2)^-} x^2 \tan \pi x = \infty$ and $\lim_{x \to (1/2)^+} x^2 \tan \pi x = -\infty$. Therefore, $\lim_{x \to (1/2)} x^2 \tan \pi x$ does not exist.

56. No. For example, $f(x) = \frac{1}{x^2 + 1}$ has no vertical asymptote.

30. $\lim_{x \to -1} \frac{x^2 - 6x - 7}{x + 1} = \lim_{x \to -1} (x - 7) = -8$

Removable discontinuity at x = -1

34.
$$\lim_{x \to 1^+} \frac{2+x}{1-x} = -\infty$$

- **38.** $\lim_{x \to -(1/2)^+} \frac{6x^2 + x 1}{4x^2 4x 3} = \lim_{x \to -(1/2)^+} \frac{3x 1}{2x 3} = \frac{5}{8}$
- **42.** $\lim_{x\to 0^-} \left(x^2 \frac{1}{x}\right) = \infty$
- **46.** $\lim_{x \to 0} \frac{(x+2)}{\cot x} = \lim_{x \to 0} [(x+2)\tan x] = 0$
- **50.** $f(x) = \frac{x^3 1}{x^2 + x + 1}$

 $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x - 1) = 0$

54. The line x = c is a vertical asymptote if the graph of f approaches $\pm \infty$ as x approaches c.

58. $P = \frac{k}{V}$

 $\lim_{V \to 0^+} \frac{k}{V} = k(\infty) = \infty$ (In this case we know that k > 0.)

323

- **60.** (a) $r = 50\pi \sec^2 \frac{\pi}{6} = \frac{200\pi}{3}$ ft/sec
 - (b) $r = 50\pi \sec^2 \frac{\pi}{3} = 200\pi \text{ ft/sec}$
 - (c) $\lim_{\theta \to (\pi/2)^{-}} \left[50\pi \sec^2 \theta \right] = \infty$
- **64.** (a) Average speed = $\frac{\text{Total distance}}{\text{Total time}}$

$$50 = \frac{2d}{(d/x) + (d/y)}$$

$$50 = \frac{2xy}{y+x}$$

$$50y + 50x = 2xy$$

$$50x = 2xy - 50y$$

$$50x = 2y(x - 25)$$

$$\frac{25x}{x - 25} = y$$

Domain: x > 25

66. (a) $A = \frac{1}{2}bh - \frac{1}{2}r^2\theta = \frac{1}{2}(10)(10\tan\theta) - \frac{1}{2}(10)^2\theta$ = 50 tan θ - 50 θ

Domain: $\left(0, \frac{\pi}{2}\right)$

68. False; for instance, let

$$f(x) = \frac{x^2 - 1}{x - 1}.$$

The graph of f has a hole at (1, 2), not a vertical asymptote.

72. Let $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{1}{x^4}$, and c = 0.

$$\lim_{x\to 0}\frac{1}{x^2}=\infty \text{ and } \lim_{x\to 0}\frac{1}{x^4}=\infty, \text{ but}$$

$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x^4} \right) = \lim_{x \to 0} \left(\frac{x^2 - 1}{x^4} \right) = -\infty \neq 0.$$

62. $m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$

$$\lim_{v \to c^{-}} m = \lim_{v \to c^{-}} \frac{m_0}{\sqrt{1 - (v^2/c^2)}} = \infty$$

- (b) x 30 40 50 60 y 150 66.667 50 42.857
- (c) $\lim_{x \to 25^+} \frac{25x}{x 25} = \infty$

As x gets close to 25 mph, y becomes larger and larger.

- (b) ϕ 0.3 0.6 0.9 1.2 1.5 $f(\theta)$ 0.47 4.21 18.0 68.6 630.1
- (d) $\lim_{\theta \to \pi/2^-} A = \infty$
- **70.** True
- **74.** Given $\lim_{x \to c} f(x) = \infty$, let g(x) = 1. then $\lim_{x \to c} \frac{g(x)}{f(x)} = 0$ by Theorem 1.15.