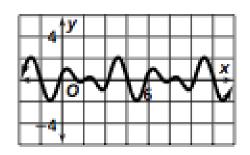
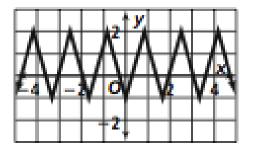
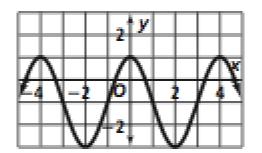
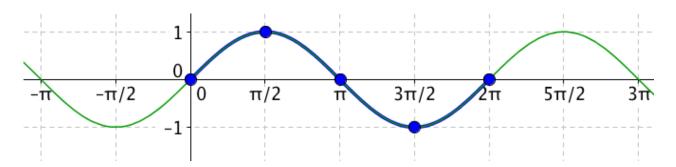

Period Functions


The graph of a **periodic function** shows a repeating pattern. The distance from 1 point on the graph to the point where the pattern begins repeating is called the **period**.


Periodic Function: repeats a pattern of y-values at regular intervals **Cycle**: one complete pattern, a cycle may begin at any point on the graph **Period**: the horizontal (x) length of one cycle

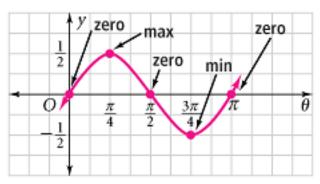

Amplitude: half the distance between the maximum and minimum y-values of a function

Examples:

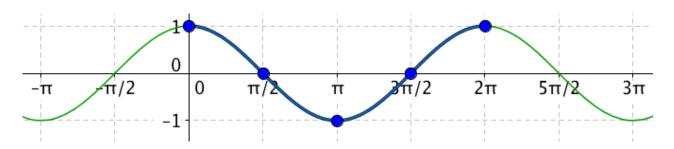


<u>Graphing Sine</u> Sine Function: y = sinx (amplitude =1, period = 2π)

We will graph the angle measure (the x value) in radians. To graph by hand we will find 5 key points. These points are the maximum, the minimum, and the x-intercepts. We will usually graph only 1 cycle.


The graph of a sine function is called a **sine curve**.

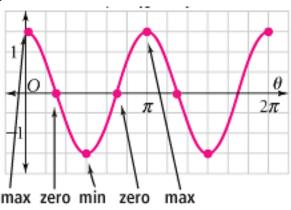
For $y = a \sin bx$ with $a \neq 0$, b > 0 and x in radians:


 \succ |a| is the amplitude of the function

- ➢ if *a* is negative the graph flips over the x-axis
- \succ *b* is the number of cycles in the interval 0 to 2π
- $\succ \frac{2\pi}{b}$ is the period of the function

Example: Sketch one cycle of $y = \frac{1}{2} \sin 2x$ $|a| = \frac{1}{2}$, so the amplitude is $\frac{1}{2}$ b = 2 so there are 2 cycles from 0 to 2π $\frac{2\pi}{b} = \frac{2\pi}{2} = \pi$ so the period is π Divide the period into fourths. Using the values of the amplitude and period plot the pattern zero-max-zero-min-zero.

<u>Graphing Cosine</u> Cosine Function: $y = \cos x$ (amplitude =1, period = 2π)



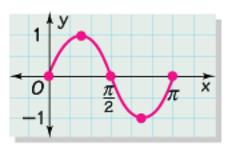
We will graph the angle measure (the x value) in radians. To graph by hand we will find 5 key points. These points are the maximum, the minimum, and the x-intercepts. We will usually graph only 1 cycle.

For $y = a \cos bx$ with $a \neq 0$, b > 0 and x in radians:

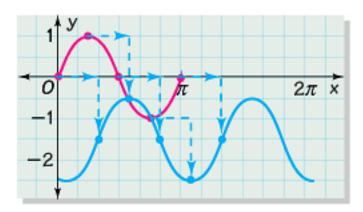
- \succ |*a*| is the amplitude of the function
- ➢ if a is negative the graph flips over the x-axis
- \succ *b* is the number of cycles in the interval 0 to 2π
- $\succ \frac{2\pi}{b}$ is the period of the function

Example: Sketch one cycle of $y = 1.5 \cos 2x$ |a| = 1.5, so the amplitude is 1.5b = 2 so there are 2 cycles from 0 to 2π $\frac{2\pi}{b} = \frac{2\pi}{2} = \pi$ so the period is π Divide the period into fourths. Using the values of the amplitude and period plot the pattern zero-max-zero-min-zero.

Translating Sine and Cosine Functions


Phase Shift: a horizontal translation of a periodic function.

For $y = a \sin b(x-h) + k$ or $y = a \cos b(x-h) + k$


- \succ |a| is the amplitude of the function
- ➢ if *a* is negative the graph flips over the x-axis
- \succ *b* is the number of cycles in the interval 0 to 2π
- $\succ \frac{2\pi}{b}$ is the period of the function
- h is the phase shift (horizontal shift)
- ➢ k is the vertical shift

Example: Sketch the graph of
$$y = \sin 2\left(x - \frac{\pi}{3}\right) - \frac{3}{2}$$

|a| = 1, so the amplitude is 1 b = 2 so there are 2 cycles from 0 to 2π $\frac{2\pi}{b} = \frac{2\pi}{2} = \pi$ so the period is π Sketch one cycle of y = sin2xUse the 5 key points.

Since $h = \frac{\pi}{3}$ and $k = -\frac{3}{2}$ translate the graph $\frac{\pi}{3}$ units to the right and $\frac{3}{2}$ units down. Sketch the graph.

