1. Use the piecewise function to evaluate the following.

$$
f(x)=\left\{\begin{array}{lr}
\frac{3}{x-2}, & x<-3 \\
2 x^{2}-3 x, & -3<x \leq 6 \\
8, & x>6
\end{array}\right.
$$

a. $f(-1)=$
b. $f(-4)=$
c. $f(9)=$
d. $f(6)=$
e. $2 f(-1)+3 f(7)=$
2. Graph the following piecewise function.

3. NUMERICALLY Use the piecewise function to fill in the table.

$$
f(x)= \begin{cases}-x+4, & x \leq 0 \\ -3 x+18, & x>0\end{cases}
$$

x	$f(x)$
-2	
0	
1	
	-12

4. When a diabetic takes long-acting insulin, the insulin reaches its peak effect on the blood sugar level in about three hours. This effect remains fairly constant for 5 hours, then declines, and is very low until the next injection. In a typical patient, the level of insulin might be modeled by the following function.

$$
f(t)= \begin{cases}40 t+100 & \text { if } 0 \leq t \leq 3 \\ 220 & \text { if } 3<t \leq 8 \\ -80 t+860 & \text { if } 8<t \leq 10 \\ 60 & \text { if } 10<t \leq 24\end{cases}
$$

Here, $f(t)$ represents the blood sugar level at time t hours after the time of the injection. If a patient takes insulin at 6 am , find the blood sugar level at each of the following times.
a. 7 am
b. 11 am
c. 3 pm
d. 5 pm
5. Application problem! Sully's blood pressure changes throughout the school day. Let x represent the time since 8:00AM (so, 10:00 AM would be $x=2,1: 00 \mathrm{PM}$ would be $x=5$); use the following information to write a piecewise function that represents Sully's BP throughout the day.
a. Sully's BP starts at 90 and rises 5 points every hour for the first four hours.
b. Sully does yoga from 12-1 and maintains a BP of 110 .
c. Sully's Honors math class meets from 1-3 and so his BP rises from 110 at 10 points per hour.
d. Sully heads home and relaxes so that his BP begins dropping at 2 points per hour until his 8PM bedtime.

