Quiz Review

E S	
Graph e interval	
notati	
etio:	
f the fo ion), re	
owing. States and y-i	
lowing. State both the ots and y-intercepts.	
ate be	
epts	
he v	
he vertic	
<u> </u>	
nd I	
ori	
cal and horizont	
9 9 9 9 P	
ym,	
al asymptote, domain and	
e, do	
domain and ra	
1 20	
guen p	
nge	
$\overline{}$	

f(x
3
+ ~
191
$=\frac{2}{x+2}-1$

Vert Asymptote:

Horiz Asymptote:

Domain:

Range:

Range: ______
Roots: _____
y-intercept:

Domain:

Horiz. Asymptote:

Vert. Asymptote:

2. $f(x) = \frac{-1}{x-3} + 2$

Roots:

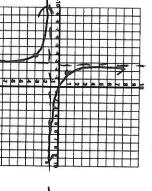
y-intercept:

- 3. Write a rational function that has a horizontal asymptote at y = 0 and vertical asymptotes at x = 3 and x = -2.
- 4. Write a rational function that has no horizontal asymptote, but has a vertical asymptote at $x = \frac{2}{3}$.
- 5. Write a rational function that has a hole at x = -3, horizontal asymptote at y = 0 and vertical asymptote at x = 3.

For the following rational function, determine the equations of all asymptotes, given the loles, determine the x and y intercepts, and give the domain of the function. If "notes, asy "none".

Asymptotes should be equations and holes/intercepts should be given as points.

domain:	y-int:	x-int:	Holes:	Horiz:	Vert:	6. $f(x) = \frac{x-5}{x^2-25}$
domain:	y-int:	x-int:	Holes:	Horiz:	Vert:	7. $f(x) = \frac{15x^2 - 7x - 2}{x^2 - 4}$
domain:	y-int:	x-int:	Holes:	Horiz:	Vert:	8. $f(x) = \frac{x^2 - 16}{x - 2}$


Graph each of the following. State both the vertical and horizontal asymptote, domain and range (in interval notation), roots and y-intercepts.

1. $f(x) = \frac{2}{x+2} - 1$

Vert Asymptote: X=-2

Horiz Asymptote: $\sqrt{z-1}$ Domain: $(-\infty)\sqrt{2}$ v(-2) ω

y-intercept:

(3x-2)(5x+1) (x-2)(x+2)

- 2. $f(x) = \frac{-1}{x-3} + 2$ Vert. Asymptote: X=3
- Write a rational function that has a horizontal asymptote at y = 0 and vertical asymptotes at x = 3 and x = -2.

1= X+6-x) = B

Write a rational function that has no horizontal asymptote, but has a vertical asymptote at $x = \frac{2}{3}$.

Write a rational function that has a hole at x = -3, horizontal asymptote at y = 0 and vertical asymptote

For the following rational function, determine the equations of all asymptotes, given cation of any holes, determine the x and y intercepts, and give the domain of the function. If "notes, say "none". Asymptotes should be equations and holes/intercepts should be given as points.

7. $f(x) = \frac{15x^2 - 7x - 2}{x^2 - 4}$

y-int: (0, 1/5) y-int: (0, 1/2) y-int: (0, 1/2) y-int: (0, 8) domain: $(-\infty, 5)$ domain: $(-\infty, 2)$ domain: $(-\infty, 2)$ domain: $(-\infty, 2)$ vint: $(-\infty, 2)$ Vert: $\frac{1}{1} = \frac{2}{15}$ Horiz: $\frac{11}{15} = \frac{15}{15}$ Holes: NONE x-int: (2/3, 0) (-5, 0) y-int: (0, 1/2)8. $f(x) = \frac{x^2 - 16}{x - 2}$ Vert: $\chi = 2$ Horiz: Done Holes: hone