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Let R be the region bounded by the graphs of ( )siny xπ=  and 3 4 ,y x x= −  as shown in the figure 
above. 
(a) Find the area of R. 
(b) The horizontal line 2y = −  splits the region R into two parts. Write, but do not evaluate, an integral 

expression for the area of the part of R that is below this horizontal line. 
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a 

square. Find the volume of this solid. 
(d) The region R models the surface of a small pond. At all points in R at a distance x from the y-axis, 

the depth of the water is given by ( ) 3 .h x x= −  Find the volume of water in the pond. 

(a) ( ) 3sin 4x x xπ = −  at 0x =  and 2x =   

Area ( ) ( )( )2 3
0

sin 4 4x x x dxπ= − − =∫  

 

3 : 
 1 : limits
1 : integrand
1 : answer

⎧
⎪
⎨
⎪⎩

 

 
 
 

(b) 3 4 2x x− = −  at 0.5391889r =  and 1.6751309s =   

The area of the stated region is ( )( )32 4
s

r
x x dx− − −∫  

 
 
 

 

2 : { 1 : limits
1 : integrand

 

(c) Volume ( ) ( )( )2 23
0

sin 4 9.978x x x dxπ= − − =∫  2 : { 1 : integrand
1 : answer

 

 
 
 

(d) 
 

Volume ( ) ( ) ( )( )2 3
0

3 sin 4 8.369 or 8.370x x x x dxπ= − − − =∫  2 : { 1 : integrand
1 : answer
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t (hours) 0 1 3 4 7 8 9 

( )L t  (people) 120 156 176 126 150 80 0 

Concert tickets went on sale at noon ( )0t =  and were sold out within 9 hours. The number of people waiting in 
line to purchase tickets at time t is modeled by a twice-differentiable function L for 0 9.t≤ ≤  Values of ( )L t  at 
various times t are shown in the table above. 
(a) Use the data in the table to estimate the rate at which the number of people waiting in line was changing at  

5:30 P.M. ( )5.5 .t =  Show the computations that lead to your answer. Indicate units of measure. 

(b) Use a trapezoidal sum with three subintervals to estimate the average number of people waiting in line during 
the first 4 hours that tickets were on sale. 

(c) For 0 9,t≤ ≤  what is the fewest number of times at which ( )L t′  must equal 0 ? Give a reason for your answer.

(d) The rate at which tickets were sold for 0 9t≤ ≤  is modeled by ( ) 2550 tr t te−=  tickets per hour. Based on the 
model, how many tickets were sold by 3 P.M. ( )3 ,t =  to the nearest whole number? 

(a) ( ) ( ) ( )7 4 150 1265.5 87 4 3
L LL − −′ ≈ = =−  people per hour 2 : { 1 : estimate

1 : units
 

(b) The average number of people waiting in line during the first 4 hours is 
approximately 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 3 3 41 1 0 (3 1) 4 34 2 2 2
L L L L L L+ + +⎛ ⎞− + − + −⎜ ⎟

⎝ ⎠
 

155.25=  people 

2 : { 1 : trapezoidal sum
 1 : answer

 

 

(c) L  is differentiable on [ ]0, 9  so the Mean Value Theorem implies 
( ) 0L t′ >  for some t in ( )1, 3  and some t in ( )4, 7 .  Similarly, 
( ) 0L t′ <  for some t in ( )3, 4  and some t in ( )7, 8 .  Then, since L′  is 

continuous on [ ]0, 9 ,  the Intermediate Value Theorem implies that 
( ) 0L t′ =  for at least three values of t in [ ]0, 9 .  

 

     OR 
 

The continuity of L on [ ]1, 4  implies that L attains a maximum value 
there. Since ( ) ( )3 1L L>  and ( ) ( )3 4 ,L L>  this maximum occurs on 
( )1, 4 .  Similarly, L attains a minimum on ( )3, 7  and a maximum on 
( )4, 8 .  L is differentiable, so ( ) 0L t′ =  at each relative extreme point 
on ( )0, 9 .  Therefore ( ) 0L t′ =  for at least three values of t in [ ]0, 9 .  
 
[Note:  There is a function L that satisfies the given conditions with 

( ) 0L t′ =  for exactly three values of t.] 

3 : 

1 : considers change in 
        sign of 
 1 : analysis
 1 : conclusion

L
⎧
⎪ ′⎪
⎨
⎪
⎪⎩

 

 
 
     OR 
 

3 : 
( )

1 : considers relative extrema 
        of  on 0, 9
 1 : analysis
 1 : conclusion

L
⎧
⎪⎪
⎨
⎪
⎪⎩

 

(d) ( )
3

0
972.784r t dt =∫   

There were approximately 973 tickets sold by 3 P.M. 

 

2 : { 1 : integrand
1 : limits and answer
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x ( )h x  ( )h x′  ( )h x′′  ( )h x′′′  ( ) ( )4h x  

1 11 30 42 99 18 

2 80 128 488
3  448

3  584
9  

3 317 753
2  1383

4  3483
16  1125

16  

 

Let h be a function having derivatives of all orders for 0.x >  Selected values of h and its first four 
derivatives are indicated in the table above. The function h and these four derivatives are increasing on 
the interval 1 3.x≤ ≤  

(a) Write the first-degree Taylor polynomial for h about 2x =  and use it to approximate ( )1.9 .h  Is this 
approximation greater than or less than ( )1.9 ?h  Explain your reasoning. 

(b) Write the third-degree Taylor polynomial for h about 2x =  and use it to approximate ( )1.9 .h  

(c) Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about 2x =  
approximates ( )1.9h  with error less than 43 10 .−×  

(a) ( ) ( )1 80 128 2 ,P x x= + −  so ( ) ( )11.9 1.9 67.2h P≈ =  
 

( ) ( )1 1.9 1.9P h<  since h′  is increasing on the interval 
1 3.x≤ ≤  
 
 
 
 

4 : 
( )
( )
( ) ( )

1

1

1

 2 : 
 1 : 1.9
1 : 1.9 1.9  with reason

P x
P
P h

⎧
⎪
⎨
⎪ <⎩

 

 

(b) ( ) ( ) ( ) ( )2 3
3

488 44880 128 2 2 26 18P x x x x= + − + − + −

 
( ) ( )31.9 1.9 67.988h P≈ =  

 
 
 
 

 

3 : 
( )
( )

3

3

 2 : 
1 : 1.9

P x
P

⎧
⎨
⎩

 

(c) 
 

The fourth derivative of h is increasing on the interval 

1 3,x≤ ≤  so ( ) ( )4
1.9 2

584max .9x
h x

≤ ≤
=   

Therefore, ( ) ( )
4

3

4

4

1.9 25841.9 1.9 9 4!
2.7037 10
3 10

h P
−

−

−− ≤

= ×

< ×

 

 

2 : { 1 : form of Lagrange error estimate
 1 : reasoning
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A particle moves along the x-axis so that its velocity at time t, for 0 6,t≤ ≤  is given by a differentiable 
function v whose graph is shown above. The velocity is 0 at 0,t =  3,t =  and 5,t =  and the graph has 
horizontal tangents at 1t =  and 4.t =  The areas of the regions bounded by the t-axis and the graph of v on 
the intervals [ ]0, 3 ,  [ ]3, 5 ,  and [ ]5, 6  are 8, 3, and 2, respectively. At time 0,t =  the particle is at 2.x = −  

(a) For 0 6,t≤ ≤  find both the time and the position of the particle when the particle is farthest to the left. 
Justify your answer. 

(b) For how many values of t, where 0 6,t≤ ≤  is the particle at 8 ?x = −  Explain your reasoning. 

(c) On the interval 2 3,t< <  is the speed of the particle increasing or decreasing? Give a reason for your 
answer. 

(d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer. 

(a) Since ( ) 0v t <  for 0 3t< <  and 5 6,t< <  and ( ) 0v t >  
for 3 5,t< <  we consider 3t =  and 6.t =   

     ( ) ( )
3

0
3 2 2 8 10x v t dt= − + = − − = −∫  

     ( ) ( )
6

0
6 2 2 8 3 2 9x v t dt= − + = − − + − = −∫  

Therefore, the particle is farthest left at time 3t =  when 
its position is ( )3 10.x = −  

3 : ( )
6

0

1 : identifies 3 as a candidate

 1 : considers 

 1 : conclusion

t

v t dt

=⎧
⎪⎪
⎨
⎪
⎪⎩

∫  

 
 
 
 

(b) 
 

The particle moves continuously and monotonically from 
( )0 2x = −  to ( )3 10.x = −  Similarly, the particle moves 

continuously and monotonically from ( )3 10x = −  to 
( )5 7x = −  and also from ( )5 7x = −  to ( )6 9.x = −   

 
By the Intermediate Value Theorem, there are three values 
of t for which the particle is at ( ) 8.x t = −  

3 : 

1 : positions at 3,  5,  
        and 6
 1 : description of motion
 1 : conclusion

t t
t

= =⎧
⎪ =⎪
⎨
⎪
⎪⎩

 

 
 
 

(c) The speed is decreasing on the interval 2 3t< <  since on 
this interval 0v <  and v is increasing. 

1 : answer with reason 
 

(d) The acceleration is negative on the intervals 0 1t< <  and 
4 6t< <  since velocity is decreasing on these intervals. 2 : { 1 : answer

1 : justification
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The derivative of a function f is given by ( ) ( )3 xf x x e′ = −  for 0,x >  and ( )1 7.f =  

(a) The function f has a critical point at 3.x =  At this point, does f have a relative minimum, a relative 
maximum, or neither? Justify your answer. 

(b) On what intervals, if any, is the graph of f both decreasing and concave up? Explain your reasoning. 
(c) Find the value of ( )3 .f  

(a) 
 

( ) 0f x′ <  for 0 3x< <  and ( ) 0f x′ >  for 3x >   
 
Therefore, f has a relative minimum at 3.x =  
 
 
 
 
 
 

2 : 
1: minimum at 3

 1: justification
x =⎧

⎨
⎩

 

 

(b) ( ) ( ) ( )3 2x x xf x e x e x e′′ = + − = −   
( ) 0f x′′ >  for 2x >  

 
( ) 0f x′ <  for 0 3x< <   

 
Therefore, the graph of f is both decreasing and concave up on the 
interval 2 3.x< <  
 
 
 
 
 
 

 

3 : ( ) 2 : 
1 : answer with reason

f x′′⎧
⎨
⎩

 

 

(c) ( ) ( ) ( ) ( )
3 3

1 1
3 1 7 3 xf f f x dx x e dx′= + = + −∫ ∫  

                     
3 x

x
u x dv e dx
du dx v e

= − =

= =
 

( ) ( )

( )( )

3 3

11
3

1
3

3 7 3

7 3

7 3

x x

x x

f x e e dx

x e e

e e

= + − −

= + − −

= + −

∫
 

 

 

4: 
1 : uses initial condition
2 : integration by parts

 1 : answer

⎧
⎪
⎨
⎪⎩
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Consider the logistic differential equation ( )6 .8
dy y ydt = −  Let ( )y f t=  be the particular solution to the 

differential equation with ( )0 8.f =  

(a) 
 
 
 
(b) 
 

(c) 
 

(d) 

A slope field for this differential equation is given below. Sketch possible 
solution curves through the points ( )3, 2  and ( )0, 8 .  
(Note:  Use the axes provided in the exam booklet.) 
 
Use Euler’s method, starting at 0t =  with two steps of equal size, to 
approximate ( )1 .f  

Write the second-degree Taylor polynomial for f about 0,t =  and use it 
to approximate ( )1 .f  

What is the range of f for 0 ?t ≥  

(a) 

 

2 : 
( )
( )

1: solution curve through 0,8
1: solution curve through 3,2

⎧
⎨
⎩

 

(b) ( ) ( )( )1 18 2 72 2f ≈ + − =  

( ) ( )( )7 1 1051 7 8 2 16f ≈ + − =  

 

2 : ( )
1 : Euler’s method with two steps 

 1 : approximation of 1f
⎧
⎨
⎩

 

(c) ( ) ( )2

2
1 68 8

d y dy y dyydt dtdt
= − + −   

( ) ( ) ( )
0

80 8;  0 6 8 2;8t

dyf f dt =
′= = = − = −  and 

( ) ( )( ) ( )
2

2
0

1 8 50 2 2 28 8 2
t

d yf
dt =

′′ = = − − + =  

The second-degree Taylor polynomial for f about 

0t =  is ( ) 2
2

58 2 .4P t t t= − +   

( ) ( )2
291 1 4f P≈ =  

4 : 

( )

2

2 2 : 

1 : second-degree Taylor polynomial
 1 : approximation of 1

d y
dt

f

⎧
⎪⎪
⎨
⎪
⎪⎩

 

(d) The range of f for 0t ≥  is 6 8y< ≤ . 1 : answer 
 
 
 




