AP Calculus: Review Area, Volume, Distance, Arclingth

I. Find the area bounded by the following:

1.
$$y = 2x$$
 and $y = x^2-4x$

2.
$$x = y^3 - y$$
 and $x = 1 - y^4$

3.
$$y = x+5$$
, $y^2 = x$, $y = -1$, and $y = 2$
4. $y = x^2$ and $y = 2/(x^2+1)$

4.
$$y = x^2$$
 and $y = 2/(x^2+1)$

5.
$$y = x^2$$
 and $y = 2\cos(x)$

- II. Find the volume of the solid obtained by rotating the region bounded by the given curves about the given axis or line or by using cross-sections. Sketch the regions.
- 6. $y^2 = x$, x = 2y; about the x-axis

7.
$$y = x^4$$
, $y = \sin(\pi x/2)$; about $y = -1$

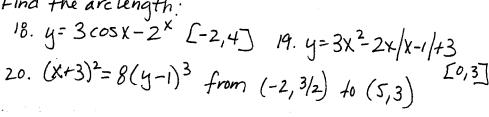
8.
$$x+y = 1$$
, $y = x+1$, and $x = 2$; about the y-axis

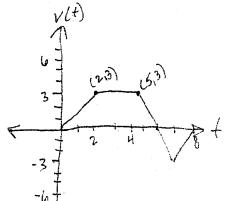
9.
$$x = 4-y^2$$
, $x = 8-2y^2$; about $x = 9$

10.
$$y = \sec x$$
, $y = 1$, $x = -1$, $x = 1$; about the x-axis

11.
$$x-y = 1$$
, $y = (x-4)^2+1$; about $y = 7$

- 12. The base of a solid is the region bounded by the graph of $y = 1-x^2$ and the x-axis. The cross sections perpendicular to the x-axis are squares. Find the volume.
- 13. Find the volume of the solid whose base is the region bounded by the graphs of $y=x^3$, x=1, and the x-axis, and whose cross sections perpendicular to the x-axis are semicircles.
- 14. The base of a solid is the upper semicircle bounded by the x-axis and the graph of $x^2+y^2=1$. The cross sections perpendicular to the y-axis are isosceles right triangles with one side (not the hypotenuse) as the base. Find the volume.


III.


- 15. The velocity of a particle over time is given by $v(t) = x^3 4x^2 + 2x + 1$ meters per second. Determine the total distance traveled from t = 0 to t = 5 seconds.
- 16. Find the value of a such that the line x = a bisects the area under the curve $y = 1/x^3$ when 1 < x < a
- 17. Given graph of v(t) and initial position x(0) = 3 meters, determine:

- b) Displacement from t = 0 to t = 8 sec.
- c) When moving right?
- d) When moving left?
- e) When at a maximum distance from the origin?

I Find the arclength:

KEY

I. Find the area bounded by the following:

1. y = 2x and $y = x^2 - 4x$ 2. $x = y^3 - y$ and $x = 1 - y^4$ 3. y = x + 5, $y^2 = x$, y = -1, and y = 24. $y = x^2$ and $y = 2/(x^2 + 1)$ 5. $y = x^2$ and y = 2/(89)(x)6. y = x + 3 and y = 2/(89)(x)7. $y = x^2$ and y = 2/(89)(x)8. $y = x^4$, $y = \sin(\pi x/2)$; about y = -18. $y = x^4$, $y = \sin(\pi x/2)$; about y = -18. y = x + 1, and y = 2; about the y-axis

9. y = x + 2; about the y-axis

9. y = x + 2; about the y-axis

10. $y = \sec x$, y = 1, x = -1, x = 1; about the x-axis

3. y = x + 210. $y = \sec x$, y = 1, x = -1, x = 1; about the x-axis

3. y = x + 23. y = x + 24. $y = x^2$ and $y = 2/(x^2 + 1)$ 12. $y = x^2$ and $y = 2/(x^2 + 1)$ 13. $y = x^2$ and $y = 2/(x^2 + 1)$ 14. $y = x^2$ and $y = 2/(x^2 + 1)$ 15. $y = x^2$ and $y = 2/(x^2 + 1)$ 16. y = x + 217. y = x + 318. y = x + 419. y = x + 410. $y = \sec x$, y = 1, x = -1, x = 1; about the x-axis

20. y = x + 321. y = x + 422. y = x + 423. y = x + 424. y = x + 425. y = x + 426. y = x + 427. y = x + 428. y = x + 429. y = x + 420. y = x + 420. y = x + 421. y = x + 422. y = x + 423. y = x + 424. y = x + 425. y = x + 426. y = x + 427. y = x + 428. y = x + 429. y = x + 420. y = x + 420. y = x + 420. y = x + 421. y = x + 422. y = x + 423. y = x + 424. y = x + 425. y = x + 426. y = x + 427. y = x + 428. y = x + 429. y = x + 420. y = x + 420. y = x + 420. y = x + 421. y = x + 422. y = x + 423. y = x + 424. y = x + 425. y = x + 426. y = x + 427. y = x + 428. y = x + 429. y = x + 420. y = x + 420. y = x + 420. y = x + 421. y = x + 422. y = x + 423. y = x + 424. y = x + 425. y = x + 426. y = x + 427. y = x + 428. y = x + 429. y = x + 420. y = x + 420. y = x + 420. y = x + 421. y = x + 421. y = x + 4

10. $y = \sec x$, y = 1, x = -1, x = 1; about the x-axis 3. So 2.5 11. x-y = 1, $y = (x-4)^2 + 1$; about y = 7 If $5 \left[6 - (x-4)^2 \right]^2 - (8-x)^2$ 39.6π = 124.40

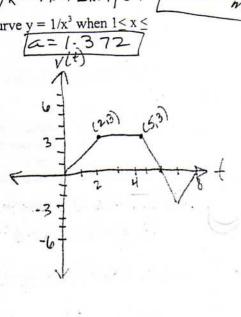
12. The base of a solid is the region bounded by the graph of $y = 1-x^2$ and the x-axis. The cross sections perpendicular to the x-axis are squares. Find the volume. $\int_{-1}^{1} (1-x^2)^2 dx = 1.066$

14. The base of a solid is the upper semicircle bounded by the x-axis and the graph of $x^2 + y^2 = 1$. It cross sections perpendicular to the y-axis are isosceles right triangles with one side (not the hypotenuse) as the base. Find the volume. $\frac{1}{2} \int (2\sqrt{1-4^2})^2 dy = \frac{4}{3}$

15. The velocity of a particle over time is given by $v(t) = x^3 - 4x^2 + 2x + 1$ meters per second.

Determine the total distance traveled from t = 0 to t = 5 seconds. $\int_{-\infty}^{\infty} \sqrt{x^3 + 4x^2 + 2x + 1} dx = \sqrt{29 + 5725}$

+=600E


17. Given graph of v(t) and initial position x(0) = 3 meters, determine:

a) x(5) 15 m

III.

- b) Displacement from t = 0 to t = 8 sec. 10.5 m
- c) When moving right? (0,6)
- d) When moving left? (6.8
- e) When at a maximum distance from the origin?

18. 24.7699 19. 15.8314

