Find $d y / d x, d^{2} y / d x^{2}$, the equation of the tangent line at the given value, and describe the concavity at the given value.

1. $x=t^{2}-1, y=\frac{1}{t}+1$ at $(3,3 / 2)$
2. $x=2+\sec (t), y=1+2 \tan (t)$ at $t=\pi / 6$
3. $x=t^{2}+3 t, y=2 t+3$ at $(4,5)$
4. $x=\sqrt{t}, y=4 t^{2}-1$ at $(2,63)$

Find all rectangular points of horizontal and vertical tangents.
4. $x=t^{2}-t+2, y=t^{3}-3 t$
5. $r=1-\cos \theta$
6. $r=3 \sin \theta$

Find the arc length:
7. $x=t^{2}, y=4 t^{3}-1$ on $[-1,1]$
8. $x=e^{-t} \cos t, y=e^{-t} \operatorname{sint}$ on $[0, \pi / 2]$
9. The position of an object is given by $\langle 4(1-\sin t), 4(t+\cos t)\rangle$ feet.
a) Find the velocity and acceleration vector.
b) Find the speed at $t=2 \pi / 3$
c) Find the total distance traveled from $t=1$ to $t=3$.
10. Find the velocity vector and the position vector if $a(t)=\left\langle 1, e^{-t}\right\rangle, v(0)=\langle 2,1\rangle$, and the object is at $(1,1)$ when $t=0$.
b) Find the position at $t=2$.

Find the area of the following regions:
11. One petal of $r=3 \cos 5 \theta \quad$ 12. Outside $r=1-\sin \theta$ and inside $r=3 \sin \theta$
13. Between the inner and outer loops of $r=2-4 \cos \theta$

2012 Short Answer BC exam \#2 (calculator active)

For $t \geq 0$, a particle is moving along a curve so that its position at time t is $(x(t), y(t))$. At time $t=2$, the particle is at position $(1,5)$. It is known that $\frac{d x}{d t}=\frac{\sqrt{t+2}}{e^{t}}$ and $\frac{d y}{d t}=\sin ^{2} t$.
a) Is the horizontal movement of the particle to the left or to the right at time $\mathbf{t}=\mathbf{2}$? Explain your answer. Fid the slope of the path of the particle at time $t=2$.
b) Find the x-coordinate of the particle's position at time $t=4$.
c) Find the speed of the particle at time $t=4$. Find the acceleration vector of the particle at time $t=4$.
d) Find the distance traveled by the particle from time $\mathbf{t}=\mathbf{2}$ to $\mathrm{t}=\mathbf{4}$.

