AP® CALCULUS BC 2003 SCORING GUIDELINES

Question 2

A particle starts at point A on the positive x-axis at time t=0 and travels along the curve from A to B to C to D, as shown above. The coordinates of the particle's position $\big(x(t),\,y(t)\big)$ are differentiable functions of t, where

$$x'(t) = \frac{dx}{dt} = -9 \text{cos} \left(\frac{\pi t}{6} \right) \text{sin} \left(\frac{\pi \sqrt{t+1}}{2} \right) \text{ and } y'(t) = \frac{dy}{dt} \text{ is not explicitly given.}$$

At time t = 9, the particle reaches its final position at point D on the positive x-axis.

- (a) At point C, is $\frac{dy}{dt}$ positive? At point C, is $\frac{dx}{dt}$ positive? Give a reason for each answer.
- (b) The slope of the curve is undefined at point B. At what time t is the particle at point B?
- (c) The line tangent to the curve at the point (x(8), y(8)) has equation $y = \frac{5}{9}x 2$. Find the velocity vector and the speed of the particle at this point.
- (d) How far apart are points A and D, the initial and final positions, respectively, of the particle?
- (a) At point C, $\frac{dy}{dt}$ is not positive because y(t) is decreasing along the arc BD as t increases.

 At point C, $\frac{dx}{dt}$ is not positive because x(t) is decreasing along the arc BD as t increases.
- $2: \left\{ \begin{array}{l} 1: \frac{dy}{dt} \text{ not positive with reason} \\ 1: \frac{dx}{dt} \text{ not positive with reason} \end{array} \right.$
- (b) $\frac{dx}{dt} = 0$; $\cos\left(\frac{\pi t}{6}\right) = 0$ or $\sin\left(\frac{\pi\sqrt{t+1}}{2}\right) = 0$ $\frac{\pi t}{6} = \frac{\pi}{2}$ or $\frac{\pi\sqrt{t+1}}{2} = \pi$; t = 3 for both. Particle is at point B at t = 3.
- $2: \left\{ \begin{array}{l} 1: \mathrm{sets} \ \frac{dx}{dt} = 0 \\ 1: t = 3 \end{array} \right.$

(c) $x'(8) = -9\cos\left(\frac{4\pi}{3}\right)\sin\left(\frac{3\pi}{2}\right) = -\frac{9}{2}$ $\frac{y'(8)}{x'(8)} = \frac{dy}{dx} = \frac{5}{9}$ $y'(8) = \frac{5}{9}x'(8) = -\frac{5}{2}$ The velocity vector is < -4.5 - 2.5 $3: \begin{cases} 1: x'(8) \\ 1: y'(8) \\ 1: \text{ speed} \end{cases}$

The velocity vector is < -4.5, -2.5 >.

- Speed = $\sqrt{4.5^2 + 2.5^2}$ = 5.147 or 5.148
- (d) $x(9) x(0) = \int_0^9 x'(t) dt$ = -39.255

The initial and final positions are 39.255 apart.

 $2: \left\{ egin{array}{l} 1: integral \ 1: answer \end{array} \right.$

AP® CALCULUS BC 2001 SCORING GUIDELINES

Question 1

An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with

$$\frac{dx}{dt} = \cos(t^3)$$
 and $\frac{dy}{dt} = 3\sin(t^2)$

for $0 \le t \le 3$. At time t = 2, the object is at position (4,5).

- (a) Write an equation for the line tangent to the curve at (4,5).
- (b) Find the speed of the object at time t=2.
- (c) Find the total distance traveled by the object over the time interval $0 \le t \le 1$.
- (d) Find the position of the object at time t = 3.

(a)
$$\frac{dy}{dx} = \frac{3\sin(t^2)}{\cos(t^3)}$$
$$\frac{dy}{dx}\Big|_{t=2} = \frac{3\sin(2^2)}{\cos(2^3)} = 15.604$$
$$y - 5 = 15.604(x - 4)$$

1: tangent line

(b) Speed =
$$\sqrt{\cos^2(8) + 9\sin^2(4)} = 2.275$$

1: answer

(c) Distance =
$$\int_0^1 \sqrt{\cos^2(t^3) + 9\sin^2(t^2)} dt$$

= 1.458

 $3: \left\{ egin{array}{ll} 2: \mbox{distance integral} \\ <-1> & \mbox{each integrand error} \\ <-1> & \mbox{error in limits} \\ 1: \mbox{answer} \end{array} \right.$

(d)
$$x(3) = 4 + \int_{2}^{3} \cos(t^{3}) dt = 3.953 \text{ or } 3.954$$

 $y(3) = 5 + \int_{2}^{3} 3\sin(t^{2}) dt = 4.906$

$$4 : \begin{cases} 1 : \text{definite integral for } x \\ 1 : \text{answer for } x(3) \\ 1 : \text{definite integral for } y \\ 1 : \text{answer for } y(3) \end{cases}$$

AP® CALCULUS BC 2005 SCORING GUIDELINES (Form B)

Question 1

An object moving along a curve in the xy-plane has position (x(t), y(t)) at time $t \ge 0$ with

$$\frac{dx}{dt} = 12t - 3t^2 \text{ and } \frac{dy}{dt} = \ln\left(1 + (t - 4)^4\right).$$

At time t = 0, the object is at position (-13, 5). At time t = 2, the object is at point P with x-coordinate 3.

- (a) Find the acceleration vector at time t = 2 and the speed at time t = 2.
- (b) Find the ν -coordinate of P.
- (c) Write an equation for the line tangent to the curve at P.
- (d) For what value of t, if any, is the object at rest? Explain your reasoning.

(a)
$$x''(2) = 0$$
, $y''(2) = -\frac{32}{17} = -1.882$
 $a(2) = \langle 0, -1.882 \rangle$
Speed = $\sqrt{12^2 + (\ln(17))^2} = 12.329$ or 12.330

 $2: \left\{ \begin{aligned} 1 &: acceleration \ vector \\ 1 &: speed \end{aligned} \right.$

(b)
$$y(t) = y(0) + \int_0^t \ln(1 + (u - 4)^4) du$$

 $y(2) = 5 + \int_0^2 \ln(1 + (u - 4)^4) du = 13.671$

3: $\begin{cases} 1: \int_0^2 \ln(1+(u-4)^4) du \\ 1: \text{ handles initial condition} \\ 1: \text{ answer} \end{cases}$

(c) At
$$t = 2$$
, slope $= \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\ln(17)}{12} = 0.236$
 $y - 13.671 = 0.236(x - 3)$

 $2: \begin{cases} 1: slope \\ 1: equation \end{cases}$

(d)
$$x'(t) = 0$$
 if $t = 0, 4$
 $y'(t) = 0$ if $t = 4$
 $t = 4$

 $2: \begin{cases} 1 : reason \\ 1 : answe \end{cases}$

AP® CALCULUS BC 2002 SCORING GUIDELINES

Question 3

The figure above shows the path traveled by a roller coaster car over the time interval $0 \le t \le 18$ seconds. The position of the car at time t seconds can be modeled parametrically by $x(t) = 10t + 4\sin t$, $y(t) = (20 - t)(1 - \cos t)$,

where x and y are measured in meters. The derivatives of these functions are given by

$$x'(t) = 10 + 4\cos t$$
, $y'(t) = (20 - t)\sin t + \cos t - 1$.

- (a) Find the slope of the path at time t=2. Show the computations that lead to your answer.
- Find the acceleration vector of the car at the time when the car's horizontal position is x = 140.
- Find the time t at which the car is at its maximum height, and find the speed, in m/sec, of the car at this time.
- (d) For 0 < t < 18, there are two times at which the car is at ground level (y = 0). Find these two times and write an expression that gives the average speed, in m/sec, of the car between these two times. Do not evaluate the expression.

(a) Slope
$$= \frac{dy}{dx}\Big|_{t=2} = \frac{y'(2)}{x'(2)} = \frac{18\sin 2 + \cos 2 - 1}{10 + 4\cos 2}$$

= 1.793 or 1.794

1: answer using $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$

(b)
$$x(t) = 10t + 4 \sin t = 140; t_0 = 13.647083$$

 $x''(t_0) = -3.529, y''(t_0) = 1.225 \text{ or } 1.226$
Acceleration vector is $< -3.529, 1.225 >$
or $< -3.529, 1.226 >$

or
$$<$$
 -3.529,1.226 $>$

as derivative of velocity vec

1: computes acceleration vector

(c)
$$y'(t) = (20 - t)\sin t + \cos t - 1 = 0$$

 $t_1 = 3.023 \text{ or } 3.024 \text{ at maximum height}$
Speed = $\sqrt{(x'(t_1))^2 + (y'(t_1))^2} = |x'(t_1)|$
= 6.027 or 6.028

$$3 \begin{cases} 1: \text{ sets } y'(t) = 0 \\ 1: \text{ selects first } t > 0 \\ 1: \text{ speed} \end{cases}$$

(d)
$$y(t) = 0$$
 when $t = 2\pi$ and $t = 4\pi$
Average speed $= \frac{1}{2\pi} \int_{2\pi}^{4\pi} \sqrt{(x'(t))^2 + (y'(t))^2} dt$
 $= \frac{1}{2\pi} \int_{2\pi}^{4\pi} \sqrt{(10 + 4\cos t)^2 + ((20 - t)\sin t + \cos t - 1)^2} dt$

$$3 \left\{ \begin{array}{l} 1: \ t=2\pi, t=4\pi \\ 1: \ \mbox{limits and constant} \\ 1: \ \mbox{integrand} \end{array} \right.$$

AP® CALCULUS BC 2002 SCORING GUIDELINES (Form B)

Question 1

A particle moves in the xy-plane so that its position at any time t, for $-\pi \le t \le \pi$, is given by $x(t) = \sin(3t)$ and y(t) = 2t.

- (a) Sketch the path of the particle in the xy-plane provided. Indicate the direction of motion along the path.
- (b) Find the range of x(t) and the range of y(t).
- (c) Find the smallest positive value of t for which the x-coordinate of the particle is a local maximum. What is the speed of the particle at this time?
- (d) Is the distance traveled by the particle from $t = -\pi$ to $t = \pi$ greater than 5π ? Justify your answer.

(a)

 $\begin{array}{c} \text{three cycles of sine} \\ x \text{ between } -1 \text{ and } 1 \\ y \text{ between } -2\pi \text{ and } 2\pi \\ 1 : \text{direction} \end{array}$

(b) $-1 \le x(t) \le 1$ $-2\pi \le y(t) \le 2\pi$ $\begin{aligned} &1: \text{closed interval for } x(t) \\ &1: \text{closed interval for } y(t) \end{aligned}$

(c) $x'(t) = 3\cos 3t = 0$ $3t = \frac{\pi}{2}; \ t = \frac{\pi}{6}$ Speed = $\sqrt{9\cos^2(3t) + 4}$

 $3 \left\{ \begin{array}{l} 1: x'(t) = 3\cos 3t = 0 \\ \\ 1: \text{solves for } t \\ \\ 1: \text{speed at student's time} \end{array} \right.$

At $t = \frac{\pi}{6}$,

Speed = $\sqrt{9\cos^2\left(\frac{\pi}{2}\right) + 4} = 2$

(d) Distance = $\int_{-\pi}^{\pi} \sqrt{9\cos^2(3t) + 4} dt$

 $= 17.973 > 5\pi$

1 : integral for distance1 : conclusion with justification

AP® CALCULUS BC 2003 SCORING GUIDELINES (Form B)

Question 4

A particle moves in the xy-plane so that the position of the particle at any time t is given by

$$x(t) = 2e^{3t} + e^{-7t}$$
 and $y(t) = 3e^{3t} - e^{-2t}$.

- (a) Find the velocity vector for the particle in terms of t, and find the speed of the particle at time t = 0.
- (b) Find $\frac{dy}{dx}$ in terms of t, and find $\lim_{t\to\infty} \frac{dy}{dx}$.
- (c) Find each value t at which the line tangent to the path of the particle is horizontal, or explain why none exists.
- (d) Find each value t at which the line tangent to the path of the particle is vertical, or explain why none exists.
- (a) $x'(t) = 6e^{3t} 7e^{-7t}$ $y'(t) = 9e^{3t} + 2e^{-2t}$ Velocity vector is $< 6e^{3t} - 7e^{-7t}$, $9e^{3t} + 2e^{-2t} >$
- $3: \left\{ egin{array}{l} 1: x'(t) \ 1: y'(t) \ 1: \mathrm{speed} \end{array}
 ight.$

Speed = $\sqrt{x'(0)^2 + y'(0)^2} = \sqrt{(-1)^2 + 11^2}$ = $\sqrt{122}$

(b) $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{9e^{3t} + 2e^{-2t}}{6e^{3t} - 7e^{-7t}}$

- $2: \begin{cases} 1: \frac{dy}{dx} \text{ in terms of } t\\ 1: \text{limit} \end{cases}$
- $\lim_{t \to \infty} \frac{dy}{dx} = \lim_{t \to \infty} \frac{9e^{3t} + 2e^{-2t}}{6e^{3t} 7e^{-7t}} = \frac{9}{6} = \frac{3}{2}$
- (c) Need y'(t) = 0, but $9e^{3t} + 2e^{-2t} > 0$ for all t, so none exists.
- 2: $\begin{cases} 1 : \text{considers } y'(t) = 0 \\ 1 : \text{explains why none exists} \end{cases}$

(d) Need x'(t) = 0 and $y'(t) \neq 0$. $6e^{3t} = 7e^{-7t}$ $e^{10t} = \frac{7}{6}$ $t = \frac{1}{10} \ln \left(\frac{7}{6}\right)$ $2: \left\{ \begin{array}{l} 1: \text{considers } x'(t) = 0 \\ 1: \text{solution} \end{array} \right.$

AP® CALCULUS BC 2003 SCORING GUIDELINES (Form B)

Question 5

Let f be a function defined on the closed interval [0,7]. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x) = \int_2^x f(t) dt$.

- (b) Find the average rate of change of g on the interval $0 \le x \le 3$.
- (c) For how many values c, where 0 < c < 3, is g'(c) equal to the average rate found in part (b)? Explain your reasoning.
- (d) Find the x-coordinate of each point of inflection of the graph of q on the interval 0 < x < 7. Justify your answer.

(a)
$$g(3) = \int_2^3 f(t) dt = \frac{1}{2} (4+2) = 3$$

 $g'(3) = f(3) = 2$
 $g''(3) = f'(3) = \frac{0-4}{4-2} = -2$

(b)
$$\frac{g(3) - g(0)}{3} = \frac{1}{3} \int_0^3 f(t) dt$$
$$= \frac{1}{3} \left(\frac{1}{2} (2)(4) + \frac{1}{2} (4+2) \right) = \frac{7}{3}$$

2:
$$\begin{cases} 1: g(3) - g(0) = \int_0^3 f(t) dt \\ 1: \text{answer} \end{cases}$$

(c) There are two values of c.

We need $\frac{7}{3} = g'(c) = f(c)$ The graph of f intersects the line $y = \frac{7}{3}$ at two places between 0 and 3.

$$2: \left\{ \begin{array}{l} 1: \text{answer of } 2\\ 1: \text{reason} \end{array} \right.$$

(d) x = 2 and x = 5because g' = f changes from increasing to decreasing at x = 2, and from decreasing to increasing at x = 5.

$$2: \left\{ \begin{array}{l} 1: x=2 \text{ and } x=5 \text{ only} \\ \\ 1: \text{justification} \\ \\ \text{(ignore discussion at } x=4) \end{array} \right.$$

AP® CALCULUS BC 2004 SCORING GUIDELINES

Question 3

An object moving along a curve in the xy-plane has position (x(t), y(t)) at time $t \ge 0$ with

 $\frac{dx}{dt} = 3 + \cos(t^2)$. The derivative $\frac{dy}{dt}$ is not explicitly given. At time t = 2, the object is at position (1, 8).

- (a) Find the x-coordinate of the position of the object at time t = 4.
- (b) At time t = 2, the value of $\frac{dy}{dt}$ is -7. Write an equation for the line tangent to the curve at the point (x(2), y(2)).
- (c) Find the speed of the object at time t = 2.
- (d) For $t \ge 3$, the line tangent to the curve at (x(t), y(t)) has a slope of 2t + 1. Find the acceleration vector of the object at time t = 4.

(a)
$$x(4) = x(2) + \int_2^4 (3 + \cos(t^2)) dt$$

= $1 + \int_2^4 (3 + \cos(t^2)) dt = 7.132$ or 7.133

3:
$$\begin{cases} 1: \int_{2}^{4} (3 + \cos(t^{2})) dt \\ 1: \text{ handles initial condition} \\ 1: \text{ answer} \end{cases}$$

(b)
$$\frac{dy}{dx}\Big|_{t=2} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}\Big|_{t=2} = \frac{-7}{3 + \cos 4} = -2.983$$

 $y - 8 = -2.983(x - 1)$

$$2: \begin{cases} 1: \text{finds } \frac{dy}{dx} \Big|_{t=2} \\ 1: \text{equation} \end{cases}$$

- (c) The speed of the object at time t = 2 is $\sqrt{(x'(2))^2 + (y'(2))^2} = 7.382$ or 7.383.
- 1 : answer

(d)
$$x''(4) = 2.303$$

 $y'(t) = \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = (2t+1)(3+\cos(t^2))$
 $y''(4) = 24.813$ or 24.814
The acceleration vector at $t = 4$ is $\langle 2.303, 24.813 \rangle$ or $\langle 2.303, 24.814 \rangle$.

$$3: \begin{cases} 1: x''(4) \\ 1: \frac{dy}{dt} \\ 1: \text{answer} \end{cases}$$

AP® CALCULUS BC 2004 SCORING GUIDELINES (Form B)

Question 1

A particle moving along a curve in the plane has position (x(t), y(t)) at time t, where

$$\frac{dx}{dt} = \sqrt{t^4 + 9}$$
 and $\frac{dy}{dt} = 2e^t + 5e^{-t}$

for all real values of t. At time t = 0, the particle is at the point (4, 1).

- (a) Find the speed of the particle and its acceleration vector at time t = 0.
- (b) Find an equation of the line tangent to the path of the particle at time t = 0.
- (c) Find the total distance traveled by the particle over the time interval $0 \le t \le 3$.
- (d) Find the x-coordinate of the position of the particle at time t = 3.
- (a) At time t = 0:

Speed =
$$\sqrt{x'(0)^2 + y'(0)^2} = \sqrt{3^2 + 7^2} = \sqrt{58}$$

Acceleration vector = $\langle x''(0), y''(0) \rangle = \langle 0, -3 \rangle$

 $2: \begin{cases} 1: \text{speed} \\ 1: \text{acceleration vector} \end{cases}$

(b) $\frac{dy}{dx} = \frac{y'(0)}{x'(0)} = \frac{7}{3}$

Tangent line is $y = \frac{7}{3}(x-4) + 1$

 $2: \begin{cases} 1: slope \\ 1: tangent line \end{cases}$

- (c) Distance = $\int_0^3 \sqrt{\left(\sqrt{t^4 + 9}\right)^2 + \left(2e^t + 5e^{-t}\right)^2} dt$ = 45.226 or 45.227
- 3: $\begin{cases} 2: \text{distance integral} \\ \langle -1 \rangle \text{ each integrand error} \\ \langle -1 \rangle \text{ error in limits} \\ 1: \text{answer} \end{cases}$

(d) $x(3) = 4 + \int_0^3 \sqrt{t^4 + 9} dt$ = 17.930 or 17.931 $2: \begin{cases} 1 : integral \\ 1 : answer \end{cases}$

Copyright © 2004 by College Entrance Examination Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

AP® CALCULUS BC 2004 SCORING GUIDELINES (Form B)

Question 2

Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor polynomial for f about x = 2 is given by $T(x) = 7 - 9(x - 2)^2 - 3(x - 2)^3$.

- (a) Find f(2) and f''(2).
- (b) Is there enough information given to determine whether f has a critical point at x = 2?

 If not, explain why not. If so, determine whether f(2) is a relative maximum, a relative minimum, or neither, and justify your answer.
- (c) Use T(x) to find an approximation for f(0). Is there enough information given to determine whether f has a critical point at x = 0? If not, explain why not. If so, determine whether f(0) is a relative maximum, a relative minimum, or neither, and justify your answer.
- (d) The fourth derivative of f satisfies the inequality $|f^{(4)}(x)| \le 6$ for all x in the closed interval [0, 2]. Use the Lagrange error bound on the approximation to f(0) found in part (c) to explain why f(0) is negative.
- (a) f(2) = T(2) = 7 $\frac{f''(2)}{2!} = -9 \text{ so } f''(2) = -18$

- 2: $\begin{cases} 1: f(2) = 7 \\ 1: f''(2) = -18 \end{cases}$
- (b) Yes, since f'(2) = T'(2) = 0, f does have a critical point at x = 2. Since f''(2) = -18 < 0, f(2) is a relative maximum value.
- 2: $\begin{cases} 1 : \text{states } f'(2) = 0 \\ 1 : \text{declares } f(2) \text{ as a relative} \\ \text{maximum because } f''(2) < 0 \end{cases}$
- (c) $f(0) \approx T(0) = -5$ It is not possible to determine if f has a critical point at x = 0 because T(x) gives exact information only at x = 2.
- 3: $\begin{cases} 1: f(0) \approx T(0) = -5\\ 1: \text{ declares that it is not}\\ \text{possible to determine}\\ 1: \text{ reason} \end{cases}$

- (d) Lagrange error bound $=\frac{6}{4!}|0-2|^4=4$ $f(0) \le T(0) + 4 = -1$ Therefore, f(0) is negative.
- 2 : { 1 : value of Lagrange error bound 1 : explanation