AP Calculus AB – Practice Chapter 5

If the following are separable, solve the differential equation. If not separable, say so \odot

1.
$$y'=2xy$$
 (1,2)
2. $y'=e^{y}sinx$ (0,0)
3. $y'=ln(xy)$ (1,1)
4. $y'=ycosx + y$ (0,2)
5. $y'=\frac{e^{x-y^2}}{y}$, (0,0)
6. $xy'=ln(x^y)$ (1,1)
7. $y'=2x-3y$ (1,2)

- 8. Show if $y = C_1x + C_2x^3$ satisfies the differential equation $x^2y'' 3xy' + 3y = 0$. Then find the particular solution that satisfies the initial condition y = 0 and y'=4 when x=2.
- 9. The rate of growth of the US population is proportional to the population at any time t. If the population was 4 million in 1790 and 180 million in 1960, give the equation for the population at time t and find the population predicted for 2020.
- 10. A bacterial population grows at a rate proportional to its size. Initially there are 10000 and after 10 days there are 24000 bacteria. Set up a differential equation and solve to find the population at time t. How long will it take the initial population to double?
- 11. In processing raw sugar, the rate of change of the amount of raw sugar is proportional to the amount of raw sugar remaining. Set up a differential equation, and solve for the amount of sugar at any time t if 500 kg of raw sugar reduces to 300 kg of sugar during the first 24 minutes. What is the half life?
- 12. The slope of a curve at (x, y) is given by x^2y . Find the equation of the curve if it contains the point (1, 3).
- 13. A 2000 gallon tank can support no more than 150 guppies. Six guppies are introduced into the tank. Assume that the rate of growth of the population is $\frac{dP}{dt} = 0.0015P(300-2P)$ where time t is in weeks.
 - a) What population of guppies will result in the fastest growing population?
 - b) Determine $\lim P(t)$

Find the derivatives of the following:

14.
$$y = 4^{\tan x^2} - \log_2(x^3 - \sec x)$$
 15. $y = e^{6\ln x + 2\ln 4 - \ln 2}$ 16. $y = (\tan x)^{\sec x}$ 17. $y = \log \left| \frac{3x^3}{(x-1)(x+4)} \right|$

Review integrals from practice sheet

```
p. 407 # 65-72, 77, 81-84, 93-98, 105, 106
```