\qquad
Unit 3, Lesson 3: Irrational and Imaginary Roots of Polynomials

An irrational root of a polynomial is one that contains a square root.

- Examples: $2+\sqrt{5}, \sqrt{13}, 3-\sqrt{11}$)

Irrational roots ALWAYS travel in pairs:
If $2+\sqrt{5}$ is a root then its conjugate \qquad is also a root.

What would be the conjugate of $\sqrt{13}$? \qquad

What about $3-\sqrt{11}$? \qquad

An imaginary root is one that contains an imaginary number (i).

- Examples: (3+2i,-7i,9-14i)

Imaginary roots ALWAYS travel in pairs:
If $3+2 i$ is a root then its conjugate \qquad is also a root.

What is the conjugate of $-7 i$? \qquad

Examples:

1. A polynomial has the roots $4-\sqrt{7}$ and $\sqrt{5}$. Name two additional roots.
2. A polynomial has the roots $3 i$ and $-2+i$. Name two additional roots.

You Try:
3. A polynomial has the roots $2+3 i$ and $\sqrt{7}$. Name two additional roots.
4. A polynomial has the roots $-4 i$ and $6-i$. Name two additional roots.

Writing a Polynomial from its Roots

Find a third degree equation that has roots at:
5. 3 and $2 i$
a. List all roots: \qquad
b. Write equation using the above roots:

6. -4 and $4 i$
a. List all roots:
b. Write equation using the above roots:
7. -7 and $\sqrt{2}$
a. List all roots: \qquad
b. Write equation using the above roots:
8. 3 and $2-i$
a. List all roots:
b. Write equation using the above roots:
9. 6 and $2-\sqrt{3}$
a. List all roots:
b. Write equation using the above roots:

Write a $\mathbf{3}^{\text {rd }}$ degree polynomial equation with the given roots. Show work on a separate sheet. No work=No credit.

1. $1,2-i$
2. $5+2 i,-2$
3. $3,6+i$
4. $-4, \sqrt{2}$
5. $2-\sqrt{3},-1$
6. $0,3-\sqrt{3}$
7. $3 i, 7$
8. $2+\sqrt{5}, 3$
9. $-3, i$
10. $1-i, 8$
11. $1,5 i$
12. $2,4+i$
13. $3,-4 i$
14. $0,2-i$
15. $-7,1-\sqrt{2}$
16. $-4,-\sqrt{7}$
