Math 3

Name _____

Unit 3, Lesson 3: Irrational and Imaginary Roots of Polynomials

An irrational root of a polynomial is one that contains a square root.

• Examples: $2 + \sqrt{5}$, $\sqrt{13}$, $3 - \sqrt{11}$)

Irrational roots ALWAYS travel in pairs:

If $2 + \sqrt{5}$ is a root then its conjugate ______ is also a root.

What would be the conjugate of $\sqrt{13}$? _____

What about $3-\sqrt{11}$?

An imaginary root is one that contains an imaginary number (i).

• Examples: (3+ 2i ,-7i ,9 -14i)

Imaginary roots ALWAYS travel in pairs:

If 3 + 2i is a root then its conjugate ______ is also a root.

What is the conjugate of –7i? _____

Examples:

- 1. A polynomial has the roots $4 \sqrt{7}$ and $\sqrt{5}$. Name two additional roots.
- 2. A polynomial has the roots 3i and -2+i. Name two additional roots.

You Try:

- 3. A polynomial has the roots 2+3i and $\sqrt{7}$. Name two additional roots.
- 4. A polynomial has the roots -4i and 6-i. Name two additional roots.

Writing a Polynomial from its Roots

Find a third degree equation that has roots at:

- 5. 3 and 2*i*
 - a. List all roots: _____
 - b. Write equation using the above roots:

6. -4 and 4i

- a. List all roots: _____
- b. Write equation using the above roots:

7. $-7 \text{ and } \sqrt{2}$

- a. List all roots: _____
- b. Write equation using the above roots:

- 8. 3 and 2-i
 - a. List all roots: _____
 - b. Write equation using the above roots:

- 9. 6 and $2 \sqrt{3}$
 - a. List all roots: _____
 - b. Write equation using the above roots:

Lesson 3 Practice

Write a 3rd degree polynomial equation with the given roots. Show work on a separate sheet.

No work=No credit.

1. 1, 2 – <i>i</i>	2. 5 + 2 <i>i</i> , -2
3. 3, 6 + <i>i</i>	4. $-4, \sqrt{2}$
5. $2-\sqrt{3}$, -1	6. 0, 3−√3
7. 3 <i>i</i> , 7	8. $2 + \sqrt{5}$, 3
9. –3, <i>i</i>	10. 1 – <i>i</i> , 8
11. 1, 5 <i>i</i>	12. 2, 4 + <i>i</i>
13. 3, -4 <i>i</i>	14. 0, 2 – <i>i</i>
15. −7, 1−√2	16. −4, −√7